Skip to main content
Log in

Damping of Vacuum Rabi Oscillations in a Two-Qubit Structure in a High-Q Cavity

  • SUPERCONDUCTIVITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The article studies the attenuation of vacuum Rabi oscillations for a system of two superconducting solid-state qubits placed in a high-Q microwave cavity. Two different cases are considered in which: 1) the first qubit is excited at the initial time and 2) the initial state comprises an entangled symmetric and antisymmetric pair of states. The dependence of the attenuation on various parameters, primarily on the coupling constant between qubits and the field and on the distance between qubits, is studied in detail. It is shown that, for some parameters, the relaxation time of the excited state of a qubit in such a system is significantly longer than that of a single qubit in the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. I. Rabi, Phys. Rev. 49, 324 (1936).

    Article  ADS  Google Scholar 

  2. E. Jaynes and F. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  3. P. W. Milonni, Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic, New York, 1993).

    Google Scholar 

  4. S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, Oxford, 2019).

    MATH  Google Scholar 

  5. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  6. G. S. Agarwal, J. Opt. Soc. Am. B 2, 480 (1985).

    Article  ADS  Google Scholar 

  7. P. K. Pathak and G. S. Agarwal, Phys. Rev. A 70, 043807 (2004).

    Article  ADS  Google Scholar 

  8. D. Braak, Phys. Rev. Lett. 107, 100401 (2011).

    Article  ADS  Google Scholar 

  9. Q. Xie, H. Zhong, M. T. Batchelor, and C. Lee, J. Phys. A 50, 113001 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 76, 1800 (1996).

    Article  ADS  Google Scholar 

  11. J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).

    Article  ADS  Google Scholar 

  12. J. Johansson, S. Saito, T. Meno, H. Nakano, M. Ueda, K. Semba, and H. Takayanagi, Phys. Rev. Lett. 96, 127006 (2006).

    Article  ADS  Google Scholar 

  13. J. M. Fink L. Steffen, P. Studer, L. S. Bishop, M. Baur, R. Bianchetti, D. Bozyigit, C. Lang, S. Filipp, P. J. Leek, and A. Wallraff, Phys. Rev. Lett. 105, 163601 (2010).

    Article  ADS  Google Scholar 

  14. M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005).

    Article  ADS  Google Scholar 

  15. M. H. Devoret, A. Wallraff, and J. M. Martinis, arXiv: cond-mat/0411174 (2004).

  16. J. Clarke and F. K. Wilhelm, Nature (London, U.K.) 453, 1031 (2008).

    Article  ADS  Google Scholar 

  17. M. H. Devoret and R. J. Schoelkopf, Science (Washington, DC, U. S.) 339, 1169 (2013).

    Article  ADS  Google Scholar 

  18. I. Buluta, S. Ashhab, and F. Nori, Rep. Prog. Phys. 74, 104401 (2011).

    Article  ADS  Google Scholar 

  19. M. D. Reed, B. R. Johnson, A. A. Houck, L. DiCarlo, J. M. Chow, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf, Appl. Phys. Lett. 96, 203110 (2010).

    Article  ADS  Google Scholar 

  20. E. A. Sete, J. M. Martinis, and A. N. Korotkov, Phys. Rev. A 92, 012325 (2015).

    Article  ADS  Google Scholar 

  21. E. M. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  22. P. Meystre and M. Sargent III, Elements of Quantum Optics, 4th ed. (Springer, Berlin, 2007).

    Book  MATH  Google Scholar 

  23. E. V. Goldstein and P. Meystre, in Spontaneous Emission and Laser Oscillation in Microcavities, Ed. by H. Yokoyama and K. Ujihara (CRC, Boca Raton, FL, 1995).

    Google Scholar 

  24. H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Phys. Rev. Lett. 107, 240501 (2011).

    Article  ADS  Google Scholar 

  25. J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  26. V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, Science (Washington, DC, U. S.) 326, 113 (2009).

    Article  ADS  Google Scholar 

  27. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  Google Scholar 

  28. J. A. Mlynek, A. A. Abdumalikov, C. Eichler, and A. Wallraff, Nat. Commun. 5, 5186 (2014).

    Article  ADS  Google Scholar 

  29. K. Koshino, S. Kono, and Y. Nakamura, Phys. Rev. Appl. 13, 014051 (2020).

    Article  ADS  Google Scholar 

  30. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  31. Ya. S. Greenberg and A. A. Shtygashev, Phys. Solid State 60, 2109 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.N. Sultanov for useful discussions.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the state assignment on project FSUN-2020-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. S. Greenberg.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuikin, O.A., Greenberg, Y.S. & Shtygashev, A.A. Damping of Vacuum Rabi Oscillations in a Two-Qubit Structure in a High-Q Cavity. Phys. Solid State 62, 1571–1579 (2020). https://doi.org/10.1134/S106378342009005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342009005X

Keywords:

Navigation