Skip to main content
Log in

Optical Transitions and Photoluminescence in Cylindrical Core/Layer/Shell β-CdS/β-HgS/β-CdS Heterostructure

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We present the theoretical consideration of the states of charge carriers in the HgS quantizing layer of a cylindrical core/layer/shell β-CdS/β-HgS/β-CdS heterostructure in the effective mass approximation within the framework of a simple two-band model. Various ranges of the geometric dimensions of the sample are considered by implementing the corresponding regimes of dimensional quantization for charge carriers in the layer. The electrostatic interaction between the electron and the hole is taken into account for each case, and, depending on the size of the sample, the corresponding values of the ground state energy of the pair are obtained. We also considered interband optical transitions in the sample and photoluminescence in each case. In each case, taking into account the electrostatic interaction leads to a shift in the threshold frequency of interband absorption and luminescence to the short-wavelength region, and the frequency itself is determined by the geometric dimensions of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. Schmid, Nanoparticles: From Theory to Application (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  2. D. Li, Quantum-Dot Quantum Well (QDQW Nanoparticles). Encyclopedia of Microfluidics and Nanofluidics (Springer, Boston, MA, 2008).

    Google Scholar 

  3. M. Henini, Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics (Elsevier, Amsterdam, 2011).

    Google Scholar 

  4. R. Gh. Chaudhuri and S. Paria, Chem. Rev. 112, 2373 (2012).

    Google Scholar 

  5. K. Chatterjee, S. Sarkar, K. J. Rao, and S. Paria, Adv. Colloid Interface Sci. 209, 8 (2014).

    Google Scholar 

  6. P. Mélinon, S. Begin-Colin, J.-L. Duvail, F. Gauffre, N. Herlin-Boime, G. Ledoux, J. Plain, P. Reiss, F. Silly, and B. Warot-Fonrose, Phys. Rep. 543, 163 (2014).

    Google Scholar 

  7. K. McNamara and S. A. M. Tofail, Adv. Phys. X 2, 54 (2017).

    Google Scholar 

  8. Nanocrystal Quantum Dots, Ed. by V. I. Klimov, 2nd ed. (CRC Press, Boca Raton, FL, 2010).

    Google Scholar 

  9. A. R. Abou-Elhamd, K. A. Al-Sallal, and A. Hassan, Energies 12, 1058 (2019).

    Google Scholar 

  10. N. V. Tkach, I. V. Pronishin, and A. M. Makhanets, Phys. Solid State 40, 514 (1998).

    ADS  Google Scholar 

  11. N. V. Tkach, A. M. Makhanets, and G. G. Zegrya, Semicond. Sci. Technol. 15, 395 (2000).

    ADS  Google Scholar 

  12. N. V. Tkach, A. M. Makhanets, and G. G. Zegrya, Semiconductors 36, 511 (2002).

    ADS  Google Scholar 

  13. O. M. Makhanets, O. M. Voitsekhivska, and A. M. Gryschyk, Condens. Matter Phys. 9, 719 (2006).

    Google Scholar 

  14. R. M. Ho, C. K. Chen, Y. W. Chiang, B. T. Ko, and C. C. Lin, Adv. Mater. 18, 2355 (2006).

    Google Scholar 

  15. H. Simchi, M. Smaeilzadeh, and M. Saani, Opt. Photon. J. 1, 5 (2011).

    Google Scholar 

  16. A. Deyasi and N. R. Das, in Proceedings of the Annual IEEE India Conference INDICON,2012, p. 312.

  17. K. D. Sattler, Handbook of Nanophysics: Nanoparticles and Quantum Dots (CRC, Boca Raton, FL, 2016).

    Google Scholar 

  18. F. Xu, R. Abdelmoula, and M. Potier-Ferry, Int. J. Solids Struct. 126, 17 (2017).

    Google Scholar 

  19. K. H. Kim and Y. S. No, Nano Convergence 4, 32 (2017).

    Google Scholar 

  20. M. Kouhi, Int. J. Mod. Phys. B 31, 1750164 (2017).

    ADS  Google Scholar 

  21. X. Li, J. Phys. D 41, 193001 (2008).

    ADS  Google Scholar 

  22. B. H. Badada, T. Shi, H. E. Jackson, L. M. Smith, C. Zheng, J. Etheridge, Q. Gao, H. H. Tan, and Ch. Jagadish, Nano Lett. 15, 7847 (2015).

    ADS  Google Scholar 

  23. Q. Xiong, C. A. Grimes, M. Zacharias, A. Fontcubertai Morral, K. Hiruma, and G. Shen, J. Nanotechnol. 2012, 2 (2012).

    Google Scholar 

  24. M. Zervos, Nanoscale Res. Lett. 9, 509 (2014).

    Google Scholar 

  25. M. Yu, Y. Huang, J. Ballweg, H. Shin, M. Huang, D. E. Savage, M. G. Lagally, E. W. Dent, R. H. Blick, and J. C. Williams, ACS Nano 5, 2447 (2011).

    Google Scholar 

  26. S. Sharma, V. Koul, and N. Singh, ACS Omega 2, 6455 (2017).

    Google Scholar 

  27. B. Tian and C. M. Lieber, Ann. Rev. Anal. Chem. 6, 31 (2013).

    Google Scholar 

  28. C. M. Lukehart and R. A. Scott, Nanomaterials: Inorganic and Bioinorganic Perspectives (Wiley, Hoboken, NJ, 2013).

    Google Scholar 

  29. N. V. Tkach and V. A. Golovatskii, Phys. Solid State 43, 365 (2001).

    ADS  Google Scholar 

  30. I. Chakraborty, D. Mitra, and S. P. Moulik, J. Nanopart. Res. 7, 227 (2005).

    ADS  Google Scholar 

  31. Q. H. Zhong and C.-H. Liu, Thin Solid Films 516, 3405 (2008).

    ADS  Google Scholar 

  32. S. J. Edrissi, S. M’zerd, I. Zorkani, K. Rahmani, Y. Chrafih, A. Jorio, and M. Khenfouch, J. Phys.: Conf. Ser. 1292, 012004 (2019).

    Google Scholar 

  33. M. A. Semina and R. A. Suris, Semiconductors 45, 917 (2011).

    ADS  Google Scholar 

  34. W. Jaskólski and G. W. Bryant, Phys. Rev. B 57, R4237 (1998).

    ADS  Google Scholar 

  35. V. A. Harutyunyan, E. M. Kazaryan, A. A. Kostanyan, and H. A. Sarkisyan, Phys. E (Amsterdam, Neth.) 36, 114 (2007).

  36. V. A. Harutyunyan. Phys. E (Amsterdam, Neth.) 41, 695 (2009).

  37. V. A. Harutyunyan, Appl. Surf. Sci. 256, 455 (2009).

    ADS  Google Scholar 

  38. V. A. Harutyunyan, G. H. Demirjian, and N. H. Gasparyan, Phys. E (Amsterdam, Neth.) 43, 614 (2010).

  39. V. A. Harutyunyan, J. Appl. Phys. 109, 014325 (2011).

    ADS  Google Scholar 

  40. V. A. Harutyunyan, Phys. E (Amsterdam, Neth.) 57, 69 (2014).

  41. V. A. Harutyunyan, Effect of Static Electric Fields on the Electronic and Optical Properties of Layered Semiconductor Nanostructures. Part I: Effect of Static Electric Fields on The Electronic Properties of Layered Semiconductor Nanostructures (Bentham Science, 2015).

    Google Scholar 

  42. R. Chen, Q.-L. Ye, T. He, V. D. Ta, Y. Ying, Y. Y. Tay, T. Wu, and H. Sun, Nano Lett. 13, 734 (2013).

    ADS  Google Scholar 

  43. R. Li, Z. Wie, F. Zhao, X. Gao, X. Fang, Y. Li, X. Wang, J. Tang, D. Fang, H. Wang, R. Chen, and X. Wang, Nanophotonics 6, 1093 (2016).

    Google Scholar 

  44. H. Sun, Zh. Wu, and Q. Tian, Int. J. Mod. Phys. B 31, 1750209 (2017).

    ADS  Google Scholar 

  45. M. El-Yadri, E. Feddi, N. Aghoutane, A. El Aouami, A. Radu, F. Dujardin, Ch. V. Nguyen, H. V. Phuc, and C. A. Duque, J. Appl. Phys. 124, 144303 (2018).

    ADS  Google Scholar 

  46. P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fominet, Adv. Mater. 31, 1805645 (2019).

    Google Scholar 

  47. V. A. Harutyunyan, D. B. Hayrapetyan, and E. M. Kazaryan, J. Contemp. Phys. 53, 48 (2018).

    Google Scholar 

  48. D. Schooss, A. Mews, A. Eychmuller, and H. Weller, Phys. Rev. B 49, 17072 (1994).

    ADS  Google Scholar 

  49. A. Mews, A. V. Kadavanich, U. Banin, and A. P. Alivisatos, Phys. Rev. B 53, R13242 (1996).

    ADS  Google Scholar 

  50. F. Benhaddou, I. Zorkani, and A. Jorio, AIP Adv. 7, 065112 (2017).

    ADS  Google Scholar 

  51. F. Virot, R. Hayn, M. Richter, and J. van den Brink, Phys. Rev. Lett. 106, 236806 (2011).

    ADS  Google Scholar 

  52. A. Svane, N. E. Christensen, M. Cardona, A. N. Chantis, M. van Schilfgaarde, and T. Kotani, Phys. Rev. B 84, 205205 (2011).

    ADS  Google Scholar 

  53. Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

  54. E. M. Kazaryan and R. L. Enfiadzhyan, Sov. Phys. Semicond. 5, 1740 (1971).

    Google Scholar 

  55. E. Assaid, E. Feddi, J. El. Khamkhami, and F. Dujardin, J. Phys.: Condens. Matter 15, 175 (2003).

    ADS  Google Scholar 

  56. A. I. Anselm, Introduction to Semiconductor Theory (Nauka, Moscow, 1978; Prentice Hall, NJ, 1982).

  57. W. Wichiansee, M. N. Nordin, M. Green, and R. J. Curry, J. Mater. Chem. 21, 7331 (2011).

    Google Scholar 

  58. W. van Roosbroeck and W. Shockley, Phys. Rev. 94, 1558 (1954).

    ADS  Google Scholar 

  59. R. Bhattacharya, B. Pal, and B. Bansal, Appl. Phys. Lett. 100, 222103 (2012).

    ADS  Google Scholar 

  60. E. Jahnke, F. Emde, and F. Lösch, Tables of Higher Functions (McGraw-Hill, New York, 1960).

    MATH  Google Scholar 

  61. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. Stegun (Nation. Bureau of Standards, New York, 1964).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Hayrapetyan.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Zhukova

Appendices

Calculation of the Averaged Potential from Eqs. (14) and (16)

In triangular coordinates, we have

$$\left| {{{{\mathbf{r}}}_{c}} - {{{\mathbf{r}}}_{{v}}}} \right| = \sqrt {r_{c}^{2} + r_{{v}}^{2} - 2{{r}_{c}}{{r}_{{v}}}\cos \alpha } .$$
(A.1)

Here, α is the angle between vectors re = rc(xc, yc, 0) and \({{{\mathbf{r}}}_{{v}}}({{x}_{{v}}}\), \({{y}_{{v}}}\), 0). Substituting Eqs. (13) and (A.1) into Eq. (16), we obtain the following intermediate result:

$$\left\langle {{{U}_{{e - h}}}({{r}_{{v}}})} \right\rangle = - \frac{{2{{e}^{2}}}}{{\gamma L}}$$
$$ \times \;\left\{ {\int\limits_{{{R}_{1}}}^{{{R}_{2}}} {\left[ {\frac{1}{{{{r}_{c}} + {{r}_{{v}}}}} - \frac{{\cos \frac{{2\pi - {{n}_{c}}({{r}_{c}} - {{R}_{1}})}}{L}}}{{{{r}_{c}} + {{r}_{{v}}}}}} \right]F\left( {\frac{\pi }{2},k} \right)d{{r}_{c}}} } \right\},$$
(A.2)
$${{k}^{2}} = \frac{{4{{r}_{c}}{{r}_{{v}}}}}{{{{{({{r}_{c}} + r)}}^{2}}}}.$$

Here F\(\left( {\pi {\text{/}}2,k} \right)\) is an incomplete elliptic integral of the first kind.

Considering now that k < 1, we use the asymptotic expansion of the elliptic integral for small values of the parameter [60] to calculate the integrals in Eq. (A.2). We obtain

$$\left\langle {{{U}_{{e - h}}}({{r}_{{v}}})} \right\rangle = - \frac{{{{e}^{2}}}}{\gamma }\int {\frac{{{{{\left| {{{\Phi }_{{{{n}_{e}}}}}({{r}_{c}})} \right|}}^{2}}}}{{\left| {{{{\mathbf{r}}}_{c}} - {{{\mathbf{r}}}_{{v}}}} \right|}}d{{{\mathbf{r}}}_{c}}} = - \frac{{{{e}^{2}}({{l}_{1}} - {{l}_{2}})}}{{\gamma ({{R}_{2}} - {{R}_{1}})}},$$
$${{l}_{1}} = \pi \left[ {\ln \frac{{{{R}_{2}} + {{r}_{{v}}}}}{{{{R}_{1}} + {{r}_{{v}}}}} + \frac{{{{r}_{{v}}}({{R}_{2}} - {{R}_{1}})}}{{({{R}_{1}} + {{r}_{{v}}})({{R}_{2}} + {{r}_{{v}}})}}} \right]$$
$${{l}_{2}} = \pi \cos \frac{{2\pi {{n}_{c}}{{R}_{1}}}}{L}\left\{ {\cos \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L}\left[ {{\text{ci}}\left( {\frac{{2\pi {{n}_{c}}{{r}_{2}}}}{L} + \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L}} \right)} \right.} \right.$$
$$\begin{gathered} \left. { - \;{\text{ci}}\left( {\frac{{2\pi {{n}_{c}}{{R}_{1}}}}{L} + \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L}} \right)} \right] + \sin \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L} \\ \times \;\left. {\left[ {{\text{si}}\left( {\frac{{2\pi {{n}_{c}}{{R}_{2}}}}{L} + \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L}} \right) - {\text{si}}\left( {\frac{{2\pi {{n}_{c}}{{R}_{1}}}}{L} + \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L}} \right)} \right]} \right\} \\ \end{gathered} $$
(A.3)
$$ + \;\pi \sin \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L}\left\{ {\sin \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L}\left[ {{\text{ci}}\left( {\frac{{2\pi {{n}_{c}}{{R}_{1}}}}{L} + \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L}} \right)} \right.} \right.$$
$$\left. { - \;{\text{ci}}\left( {\frac{{2\pi {{n}_{c}}{{R}_{2}}}}{L} + \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L}} \right)} \right] + \cos \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L}$$
$$\left. { \times \;\left[ {{\text{si}}\left( {\frac{{2\pi {{n}_{c}}{{R}_{2}}}}{L} - \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L}} \right) - {\text{si}}\left( {\frac{{2\pi {{n}_{c}}{{R}_{1}}}}{L} + \frac{{2\pi {{n}_{c}}{{r}_{{v}}}}}{L}} \right)} \right]} \right\}.$$

Here, si(x) and ci(x) are the integral sine and cosine, respectively. In dimensionless units for potential (A.3), we obtain

$$\begin{gathered} {{V}_{{e - h}}}({{\rho }_{{v}}},{{\rho }_{1}},{{\rho }_{2}}) = \frac{{\left\langle {{{U}_{{e - h}}}({{r}_{{v}}},{{R}_{1}},{{R}_{2}})} \right\rangle }}{{{{E}_{{{\text{et}}}}}}} \\ = - \frac{{{{e}^{2}}[{{l}_{1}}({{\rho }_{{v}}},{{\rho }_{1}}{{\rho }_{2}}) - {{l}_{2}}({{\rho }_{{v}}},{{\rho }_{1}}{{\rho }_{2}})]}}{{\gamma {{E}_{{{\text{et}}}}}({{\rho }_{2}} - {{\rho }_{1}})}}. \\ \end{gathered} $$
(A.4)

The graphs of functions (A.4) are presented in Fig. 3.

The dependence of potential (A.4) on the radius of the hole is practically linear. Therefore, the bulky expressions (A.3) and (A.4) can be extrapolated with great accuracy by a simple linear function

$${{V}_{{e - h}}}({{\rho }_{{v}}}) \approx - \left| a \right| + b{{\rho }_{{v}}}.$$
(A.5)

Table 7 shows the values of parameters a and b for various values of the layer thickness.

Solution of Equation (18)

By introducing the variable from Eq. (18), we obtain the following equation:

$$\begin{gathered} \xi = \left( {{{r}_{{{v} - \frac{E}{F}}}}} \right){{\left( {\frac{{2{{\mu }_{h}}F}}{{{{\hbar }^{2}}}}} \right)}^{{1/\beta }}},\quad (E = {{E}_{{e - h}}} + \left| V \right|), \\ \frac{{{{d}^{2}}\chi (\xi )}}{{d{{\xi }^{2}}}} - \xi \chi (\xi ) = 0. \\ \end{gathered} $$
(B.1)

The solutions of this equation are given, as is known [61], by a linear combination of the Airy functions of the first Ai(ξ) and the second (Bi(ξ)) kind,

$$\chi (\xi ) = {{C}_{1}}\operatorname{Ai} (\xi ) + {{C}_{2}}\operatorname{Bi} (\xi ).$$
(B.2)

Here, C1 and C2 are normalization constants. Given the boundary conditions (18), we have for the wave functions (B.2)

$$\begin{gathered} \chi ({{\xi }_{1}}) = \chi ({{\xi }_{2}}) = 0, \\ {{\xi }_{{1,2}}} = \left( {{{R}_{{1,2}}} - \frac{E}{F}} \right){{\left( {\frac{{2{{\mu }_{h}}F}}{{{{\hbar }^{2}}}}} \right)}^{{1\beta }}}. \\ \end{gathered} $$
(B.3)

Hence, we obtain the following expression to determine the energy spectrum:

$$\frac{{\operatorname{Ai} [{{{(1.222)}}^{{1\beta }}}({{\rho }_{1}}{{b}^{{1\beta }}} - \varepsilon {{b}^{{ - 2\beta }}})]}}{{\operatorname{Ai} [{{{(1.222)}}^{{1/\beta }}}({{\rho }_{2}}{{b}^{{1/\beta }}} - \varepsilon {{b}^{{ - 2\beta }}})]}}$$
$$ = \frac{{\operatorname{Bi} [{{{(1.222)}}^{{1\beta }}}({{\rho }_{1}}{{b}^{{1\beta }}} - \varepsilon {{b}^{{ - 2\beta }}})]}}{{\operatorname{Bi} [{{{(1.222)}}^{{1/\beta }}}({{\rho }_{2}}{{b}^{{1/\beta }}} - \varepsilon {{b}^{{ - 2\beta }}})]}},$$
(B.4)
$${{\rho }_{{1,2}}} = \frac{{{{R}_{{1,2}}}}}{{{{a}_{{{\text{et}}}}}}},\quad \varepsilon = \frac{E}{{{{E}_{{{\text{et}}}}}}}.$$

The solutions to this transcendental equation are the sought energy.

Calculation of Averaged Potential (31)

As we repeatedly noted, the ground state of charge carriers in various modes is of interest in this paper. Thus, we explicitly have for Eq. (31)

$$\begin{gathered} \bar {U}({{{\mathbf{r}}}_{e}},{{{\mathbf{r}}}_{{v}}};{{z}_{e}},{{z}_{{v}}}) \equiv U({{z}_{e}},{{z}_{{v}}}) \\ = - \frac{{4{{e}^{2}}}}{{\gamma {{L}^{2}}}}\int {\frac{{{{{\sin }}^{2}}\frac{{\pi ({{r}_{e}} - {{R}_{1}})}}{L}{{{\sin }}^{2}}\frac{{\pi ({{r}_{{v}}} - {{R}_{1}})}}{L}}}{{{{r}_{e}}{{r}_{{v}}}\sqrt {{{{({{{\mathbf{r}}}_{e}} - {{{\mathbf{r}}}_{{v}}})}}^{2}} + {{{({{z}_{e}} - {{z}_{{v}}})}}^{2}}} }}d{{{\mathbf{r}}}_{e}}d{{{\mathbf{r}}}_{{v}}}.} \\ \end{gathered} $$
(C.1)

Considering the motion in the (x, y) plane in the triangular coordinates (A.1), we obtain the following intermediate result

$$\bar {U}({{{\mathbf{r}}}_{e}},{{{\mathbf{r}}}_{{v}}};{{z}_{e}},{{z}_{{v}}}) \equiv U({{z}_{e}},{{z}_{{v}}})$$
$$\begin{gathered} = - \frac{{4\pi {{e}^{2}}}}{{\gamma {{L}^{2}}}}\int {\frac{{{{{\sin }}^{2}}\frac{{\pi ({{r}_{e}} - {{R}_{1}})}}{L}{{{\sin }}^{2}}\frac{{\pi ({{r}_{{v}}} - {{R}_{1}})}}{L}}}{{\sqrt {{{{({{{\mathbf{r}}}_{e}} - {{{\mathbf{r}}}_{{v}}})}}^{2}} + {{{({{z}_{e}} - {{z}_{{v}}})}}^{2}}} }}} \\ \times \;F\left( {\frac{\pi }{2};K} \right)d{{r}_{e}}d{{r}_{{v}}}, \\ \end{gathered} $$
(C.2)
$${{K}^{2}}\frac{{4{{r}_{e}}{{r}_{{v}}}}}{{{{{({{r}_{e}} - {{r}_{{v}}})}}^{2}} + {{{({{z}_{e}} + {{z}_{{v}}})}}^{2}}}}.$$

Here, \(F\left( {\frac{\pi }{2}:K} \right)\) is an incomplete elliptic integral of the first kind. Now, using the asymptotic behavior of the function \(F\left( {\frac{\pi }{2}:K} \right)\) for small values of the argument, we have, instead of (C.2),

$$U({{z}_{e}},{{z}_{{v}}}) \equiv U(t)$$
$$ = - \frac{{4\pi {{e}^{2}}{{x}_{1}}}}{{\gamma {{R}_{1}}}}\int\limits_0^1 {\int\limits_0^1 {\frac{{{{{\sin }}^{2}}\pi {{x}_{e}}{{{\sin }}^{2}}\pi {{x}_{{v}}}}}{{\sqrt {{{{({{x}_{e}} + {{x}_{{v}}} + 2{{x}_{1}})}}^{2}} + {{t}^{2}}} }}} } {\kern 1pt} {\kern 1pt} d{{x}_{e}}d{{x}_{{v}}}$$
(C.3)
$$ = - \frac{{4{{\pi }^{2}}{{e}^{2}}{{x}_{1}}}}{{\gamma {{R}_{1}}}}{{l}_{0}}({{x}_{1}},t).$$

In this integral, we replace functions sin2πxe and sin2π\({{x}_{{v}}}\) by their average values in the integration region xe, \({{x}_{{v}}}\) ∈ [0; 1]: that is, 〈sin2\({{x}_{{e,{v}}}}\)〉 = \(\frac{1}{2}\). For the corresponding integral, we obtain

$${{I}_{1}}({{x}_{1}},t) = \frac{1}{4}\int\limits_0^1 {\int\limits_0^1 {\frac{{d{{x}_{e}}d{{x}_{{v}}}}}{{\sqrt {{{{({{x}_{e}} + {{x}_{{v}}} + 2{{x}_{1}})}}^{2}} + {{t}^{2}}} }}} } $$
$$ = \frac{1}{4}\{ 2{{x}_{1}}\ln [2{{x}_{1}} + \sqrt {{{{(2{{x}_{1}})}}^{2}} + {{t}^{2}}} ] - \sqrt {{{{(2{{x}_{1}})}}^{2}} + {{t}^{2}}} \} $$
$$\begin{gathered} + \;\frac{1}{4}\{ 2{{x}_{1}} + 2 + \ln [2{{x}_{1}} + 2 + \sqrt {{{{(2{{x}_{1}} + 2)}}^{2}} + {{t}^{2}}} ] \\ - \;\sqrt {{{{(2{{x}^{1}} + 2)}}^{2}} + {{t}^{2}}} \} \\ \end{gathered} $$
(C.4)
$$ - \;\frac{1}{2}\{ 2{{x}_{1}} + 1 + \ln [2{{x}_{1}} + 1 + \sqrt {{{{(2{{x}_{1}} + 2)}}^{2}} + {{t}^{2}}} ]$$
$$ - \;\sqrt {{{{(2{{x}_{1}} + 1)}}^{2}} + {{t}^{2}}} \} .$$

Figure 4 shows the graphs of functions I0(x1, t) and I1(x1, t) for various geometric sizes of the sample.

It is seen that the results of approximate analytical and accurate numerical calculations completely coincide. In further calculations, we use the analytical expression (C.4). Since we are interested in the lowest, that is, the ground energy state of the eh pair or the energy values near the minimum potential (C.1), we expand the function

$$U({{z}_{e}} - {{z}_{{v}}}) \equiv U(t) = \frac{{4\pi {{e}^{2}}}}{{\gamma {{R}_{1}}}}{{x}_{1}}{{I}_{1}}({{x}_{1}},t)$$
(C.5)

into a series about the minimum point of t0 = 0. As a result, we obtain

$$U(t) \simeq {{x}_{1}}[\alpha ({{x}_{1}}) + \beta ({{x}_{1}}){{t}^{2}}].$$
(C.6)

Here,

$$\alpha ({{x}_{1}}) = \frac{1}{2}\{ {{x}_{1}}\ln [4({{x}_{{1 + 1}}})] + {{x}_{1}}\ln [4({{x}_{1}} + 1)]$$
$$ - \;\ln [2(2{{x}_{1}} + 1)] - 2{{x}_{1}}\ln [2(2{{x}_{1}} + 1)]\} ,$$
$$\beta ({{x}_{1}}) = \frac{1}{{8(1 + 2{{x}_{1}})}} - \frac{1}{{32{{x}_{1}}}} - \frac{1}{{32(1 + {{x}_{1}})}}.$$

Table 8 shows the values of parameters α and β for various geometric dimensions of the sample.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, V.A., Hayrapetyan, D.B. & Kazaryan, E.M. Optical Transitions and Photoluminescence in Cylindrical Core/Layer/Shell β-CdS/β-HgS/β-CdS Heterostructure. Phys. Solid State 62, 1305–1316 (2020). https://doi.org/10.1134/S106378342008003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342008003X

Keywords:

Navigation