Skip to main content
Log in

DFT/TDDFT Investigation of Electronic, Magnetic, and Optical Properties of Graphene Containing Different Values of Se Impurity

  • GRAPHENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic, magnetic, and optical properties of graphene (gr) containing selenium impurities of 2, 3, 5.5, and 12.5% were calculated by DFT. By increasing the percentage of Se impurity, the energy gap decreases from about 0.3 eV for the gr+Se(2%), to about 0.1 eV for gr+Se(3%) monolayer. Continuing this trend leads to metallic property for gr+Se(5.5%) and gr+Se(12.5%) cases. By decreasing the percentage of Se impurity as a non-thermal control parameter, the magnetization started from zero and gradually increased so that the phase transition occurred. By calculating optical properties, using TDDFT, we found that in the absorption spectrums, a visible peak appeared for the cases of Se(3%) and Se(5.5%), and in the gr+Se(12.5%) layer, there exist an infrared shoulder. Also, except for gr+Se(3%), other cases have one peak in the UVA range. Finally, in the gr+Se(2%) case, for all optical variables, the peaks are sharper and stronger, therefore this case could behave as a quantum dot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London, U.K.) 438, 197 (2005).

    Article  ADS  Google Scholar 

  4. C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science (Washington, DC, U. S.) 312 (5777), 1191 (2006).

    Article  ADS  Google Scholar 

  5. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature (London, U.K.) 446 (7131), 60 (2007).

    Article  ADS  Google Scholar 

  6. A. K. Geim, Science (Washington, DC, U. S.) 324 (5934), 1530 (2009).

    Article  ADS  Google Scholar 

  7. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature (London, U.K.) 442 (7100), 282 (2006).

    Article  ADS  Google Scholar 

  8. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  9. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

  10. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fu-denberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).

    Article  ADS  Google Scholar 

  11. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London, U.K.) 438, 201 (2005).

    Article  ADS  Google Scholar 

  12. M. Yu, Y. Li, Q. Cheng, and S. Li, Sol. Energy 182, 453 (2019).

    Article  ADS  Google Scholar 

  13. M. F. Bhopal, D. W. Lee, and S. H. Lee, A. R. Lee, H. J. Kim, and S. H. Lee, Mater. Lett. 234, 237 (2019).

    Article  Google Scholar 

  14. Z. Pour-Mohammadi and M. Amirmazlaghani, Mater. Sci. Semicond. Process. 91, 13 (2019).

    Article  Google Scholar 

  15. M. Zamani and M. Abbasnejad, Phys. C (Amsterdam, Neth.) 554, 19 (2018).

  16. L. S. Lima, Phys. C (Amsterdam, Neth.) 546, 71 (2018).

  17. G. Gonzalez de la Cruz, Superlatt. Microstruct. 125, 315 (2019).

    Article  ADS  Google Scholar 

  18. X. B. Li, W. B. Lu, J. Wang, J. Hu, Z. G. Liu, B. H. Huang, and H. Chen, Photon. Nanostruct. Fundam. Appl. 33, 66 (2019).

    Article  ADS  Google Scholar 

  19. X. Xiao, X. Li, J. D. Caldwell, S. A. Maier, and V. Giannini, Appl. Mater. Today 12, 283 (2018).

    Article  Google Scholar 

  20. W. Ren, H. Chang, T. Mao, and Y. Teng, Chem. Eng. J. 362, 160 (2019).

    Article  Google Scholar 

  21. K. Li, H. Li, N. Yan, T. Wang, and Z. Zhao, Appl. Surf. Sci. 459, 693 (2018).

    Article  ADS  Google Scholar 

  22. Y. Yang, F. Liu, and Y. Kawazoe, J. Phys. Chem. Solids 124, 54 (2019).

    Article  ADS  Google Scholar 

  23. D. Cortes-Arriagada, N. Villegas-Escobar, and D. E. Ortega, Appl. Surf. Sci. 427, 227 (2018).

    Article  ADS  Google Scholar 

  24. O. U. Akturk and M. Tomak, Appl. Surf. Sci. 347, 808 (2015).

    Article  ADS  Google Scholar 

  25. P. H. Shih, T. N. Do, B. L. Huang, G. Gumbs, D. Huang, and M. F. Lin, Carbon 144, 608 (2019).

    Article  Google Scholar 

  26. L. Huang, Y. Cao, and D. Diao, Appl. Surf. Sci. 470, 205 (2019).

    Article  ADS  Google Scholar 

  27. W. Ji, Y. Liu, Z. Shan, X. Zhang, F. Ding, and X. Li, Ceram. Int. 45, 7095 (2019).

    Article  Google Scholar 

  28. N. Feng, K. Xiang, L. Xiao, W. Chen, Y. Zhu, H. Liao, and H. Chen, J. Alloys Compd. 786, 537 (2019).

    Article  Google Scholar 

  29. C. Zhao, Z. Hu, and J. Luo, Colloids Surf., A 560, 69 (2019).

    Article  Google Scholar 

  30. Y. Xia, C. Lu, R. Fang, H. Huang, Y. Gan, C. Liang, J. Zhang, X. He, and W. Zhang, Electrochem. Commun. 99, 16 (2019).

    Article  Google Scholar 

  31. I. Pethes, R. Chahal, V. Nazabal, C. Prestipino, S. Michalik, J. Darpentigny, and P. Jovari, J. Non-Cryst. Solids 484, 49 (2018).

    Article  ADS  Google Scholar 

  32. Y. Chen, L. Wang, W. Wang, and M. Cao, Mater. Chem. Phys. 199, 416 (2017).

    Article  Google Scholar 

  33. H. Ullah, A. A. Tahir, and T. K. Mallick, Appl. Catal. B 224, 895 (2018).

    Article  Google Scholar 

  34. Y. H. Wang, Y. X. Chen, X. Wu, and K. J. Huang, Colloids Surf., B 172, 407 (2018).

    Article  Google Scholar 

  35. X. Meng, C. Yu, X. Song, J. Iocozzia, J. Hong, M. Rager, H. Jin, S. Wang, L. Huang, J. Qiu, and Z. Lin, Angew. Chem. Int. Ed. 57, 4682 (2018).

    Article  Google Scholar 

  36. I. Timrov, N. Vast, R. Gebauer, and S. Baroni, Comput. Phys. Commun. 196, 460 (2015).

    Article  ADS  Google Scholar 

  37. A. Bayat, H. Johannesson, S. Bose, and P. Sodano, Nat. Commun. 5, 3784 (2014).

    Article  ADS  Google Scholar 

  38. M. Vojta, Rep. Prog. Phys. 66, 2069 (2003).

    Article  ADS  Google Scholar 

  39. F. Wooten, Optical Properties of Solids (Academic, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moradi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardakani, Y.S., Moradi, M. DFT/TDDFT Investigation of Electronic, Magnetic, and Optical Properties of Graphene Containing Different Values of Se Impurity. Phys. Solid State 62, 1262–1270 (2020). https://doi.org/10.1134/S1063783420070021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420070021

Keywords:

Navigation