Skip to main content
Log in

Ab Initio Studies of Phase Transformations in Fe100 – xSix

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A concentration phase diagram for Fe100 – xSix (9.375 ≤ x ≤ 25.0 at %) alloys has been built on the base of the structural and magnetic phase transition temperatures estimated theoretically from the first principles. The structural phase transition temperatures for the experimentally observed crystal structures are obtained from the geometric optimization of the crystal structure. The Curie temperatures are estimated in a molecular field approximation using the constants of magnetic exchange interaction calculated ab initio. As temperature increases, the structural transitions from the ordered cubic phase to a completely disordered structure occur via a partially disordered structure over the entire concentration range. As for the magnetic transformations, the ferromagnet–paramagnet transition is observed for all the compositions, but in various crystal phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, Nature (London, U.K.) 387, 686 (1997).

    Article  ADS  Google Scholar 

  2. K. Seo, S. Lee, Y. Jo, M. H. Jung, J. Kim, D. G. Churchill, and B. Kim, J. Phys. Chem. C 113, 6902 (2009).

    Article  Google Scholar 

  3. W. A. Hines, A. H. Menotti, J. I. Budnick, T. J. Burch, T. Litrenta, V. Niculescu, and K. Raj, Phys. Rev. B 13, 4060 (1976).

    Article  ADS  Google Scholar 

  4. J. Kudrnovský, N. E. Christensen, and O. K. Andersen, Phys. Rev. B 43, 5924 (1991).

    Article  ADS  Google Scholar 

  5. A. Ionescu, C. A. F. Vaz, T. Trypiniotis, C. M. Gürtler, H. García-Miquel, J. A. C. Bland, M. E. Vickers, R. M. Dalgliesh, S. Langridge, Y. Bugoslavsky, Y. Miyoshi, L. F. Cohen, and K. R. A. Ziebeck, Phys. Rev. B 71, 094401 (2005).

    Article  ADS  Google Scholar 

  6. T. J. Burch, T. Litrenta, and J. I. Budnick, Phys. Rev. Lett. 33, 421 (1974).

    Article  ADS  Google Scholar 

  7. Y. N. Zhang, J. X. Cao, I. Barsukov, J. Lindner, B. Krumme, H. Wende, and R. Q. Wu, Phys. Rev. B 81, 144418 (2010).

    Article  ADS  Google Scholar 

  8. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  9. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  10. H. Ebert, D. Ködderitzsch, and J. Minár, Rep. Prog. Phys. 74, 096501 (2011).

    Article  ADS  Google Scholar 

  11. J. P. Perdew, K. Burke, and M. Enzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  12. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  13. M. V. Matyunina, M. A. Zagrebin, V. V. Sokolovskiy, O. O. Pavlukhina, V. D. Buchelnikov, A. M. Balagurov, and I. S. Golovin, Phase Trans. 92, 101 (2019).

    Article  Google Scholar 

  14. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  ADS  Google Scholar 

  15. P. W. Anderson, Solid State Phys. 14, 99 (1963).

    Article  Google Scholar 

  16. L. K. Varga, F. Mazaleyrat, J. Kovac, and J. M. Greneche, J. Phys.: Condens. Matter 14, 1985 (2002).

    ADS  Google Scholar 

  17. S. Miraghaei, P. Abachi, H. R. Madaah-Hosseini, and A. Bahrami, J. Mater. Proc. Tech. 203, 554 (2008).

    Article  Google Scholar 

  18. T. Khmelevska, S. Khmelevskyi, A. V. Ruban, and P. Mohn, J. Phys.: Condens. Matter 18, 6677 (2006).

    ADS  Google Scholar 

  19. J. Kudrnovský, V. Drchal, L. Bergqvist, J. Rusz, I. Tu-rek, B. Újfalussy, and I. Vincze, Phys. Rev. B 90, 134408 (2014).

    Article  ADS  Google Scholar 

  20. P. C. Shyni and A. Perumal, IEEE T. Magn. 50, 2101904 (2014).

    Article  Google Scholar 

  21. O. Kubaschewski, Iron Binary Phase Diagrams (Springer, Berlin, 1982).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-12-00283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zagrebin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagrebin, M.A., Matyunina, M.V., Koshkin, A.B. et al. Ab Initio Studies of Phase Transformations in Fe100 – xSix. Phys. Solid State 62, 739–743 (2020). https://doi.org/10.1134/S1063783420050327

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420050327

Keywords:

Navigation