Skip to main content
Log in

Structural, Magnetic, and Magneto-Caloric Properties of Cu-Substituted Nd0.67Ba0.33MnO3 Manganites

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The crystal structure and magnetic properties of polycrystalline Nd0.67Ba0.33Mn1 – xCuxO3 (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.10) manganites are discussed. All the samples are crystallized into an orthorhombic crystal structure with Imma symmetry space group and the obtained lattice parameters confirm the presence of a co-operative Jahn–Teller effect for all the studied compounds. X-ray photoelectron spectra suggest the ratio of Mn3+/Mn4+ ions are observed to be decreasing systematically with the increase of Cu-content substitution and affects the Cu-ions oxidations states. The ferromagnetic (FM) to paramagnetic (PM) transition and magnetic moment is found to decrease systematically with the increase of Cu-content substitution leading to the suppression of double-exchange interactions. The theoretical and experimentally observed values of effective PM moment and saturation magnetic moment confirm the presence of inhomogeneous magnetic states containing FM and antiferromagnetic phases in all the samples. A magnetic phase change, i.e., from second-order transition to first-order transition is witnessed in between the 4 to 6 at wt % of the Cu substitution in Nd0.67Ba0.33MnO3 mixed-valence manganite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. M. D. Coey, and M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  2. J. L. Simonds, Phys. Today 48, 26 (1995).

    Article  Google Scholar 

  3. S. B. Adler, Chem. Rev. 104, 4791 (2004).

    Article  Google Scholar 

  4. R. J. H. Voorhoeve, J. P. Remeika, L. E. Trimble, A. S. Cooper, F. J. Disalvo, and P. K. Gallagher, J. Solid State Chem. 14, 395 (1975).

    Article  ADS  Google Scholar 

  5. M. Rajeswari, C. H. Chen, A. Goyal, C. Kwon, M. C. Robson, R. Ramesh, T. Venkatesan, and S. Lakeou, Appl. Phys. Lett. 68, 3555 (1996).

    Article  ADS  Google Scholar 

  6. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science (Washington, DC, U. S.) 264, 413 (1994).

    Article  ADS  Google Scholar 

  7. H. Y. Hwang, S. W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996).

    Article  ADS  Google Scholar 

  8. M. H. Phan, S. C. Yu, and N. H. Hur, Appl. Phys. Lett. 86, 072504 (2005).

    Article  ADS  Google Scholar 

  9. A. Szewczyk, H. Szymczak, A. Wisniewski, K. Piotrowski, R. Kartaszynski, B. Dabrowski, S. Kolesnik, and Z. Bukowski, Appl. Phys. Lett. 77, 1026 (2000).

    Article  ADS  Google Scholar 

  10. A. Szewczyk, M. Gutowska, B. Dabrowski, T. Plackowski, N. P. Danilova, and Y. P. Gaidukov, Phys. Rev. B 71, 224432 (2005).

    Article  ADS  Google Scholar 

  11. C. P. Reshmi, S. Savitha Pillai, K. G. Suresh, and M. R. Varma, Solid State Sci. 19, 130 (2013).

    Article  ADS  Google Scholar 

  12. B. Arun, V. R. Akshay, and M. Vasundhara, Dalton Trans. 47, 15512 (2018).

    Article  Google Scholar 

  13. B. Arun, V. R. Akshay, and M. Vasundhara, RSC Adv. 9, 23598 (2019).

    Article  Google Scholar 

  14. Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, and D. Feng, Phys. Rev. Lett. 78, 1142 (1997).

    Article  ADS  Google Scholar 

  15. B. Arun, V. R. Akshay, G. R. Mutta, Ch. Venkatesh, and M. Vasundhara, Mater. Res. Bull. 94, 53 (2017).

    Article  Google Scholar 

  16. X. X. Zhang, J. Tejada, Y. Xin, G. F. Sun, K. W. Wong, and X. Bohigas, Appl. Phys. Lett. 69, 3596 (1996).

    Article  ADS  Google Scholar 

  17. M. H. Phan, T. L. Phan, S. C. Yu, N. D. Tho, and N. Chau, Phys. Status Solidi B 241, 1744 (2004).

    Article  ADS  Google Scholar 

  18. Z. B. Guo, J. R. Zhang, H. Huang, W. P. Ding, and Y. W. Du, Appl. Phys. Lett. 70, 904 (1997).

    Article  ADS  Google Scholar 

  19. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  20. P. G. de Gennes, Phys. Rev. 118, 141 (1960).

    Article  ADS  Google Scholar 

  21. B. Sudakshina, B. Arun, and M. Vasundhara, J. Magn. Magn. Mater. 448, 250 (2018).

    Article  ADS  Google Scholar 

  22. B. Arun, M. V. Suneesh, and M. Vasundhara, J. Magn. Magn. Mater. 418, 265 (2016).

    Article  ADS  Google Scholar 

  23. B. Arun, M. Athira, V. R. Akshay, B. Sudakshina, G. R. Mutta, and M. Vasundhara, J. Magn. Magn. Mater. 448, 322 (2018).

    Article  ADS  Google Scholar 

  24. B. Sudakshina, K. D. Chandrasekhar, H. D. Yang, and M. Vasundhara, J. Phys. D: Appl. Phys. 50, 065004 (2017).

    Article  ADS  Google Scholar 

  25. B. Arun, M. V. Suneesh, B. Sudakshina, V. R. Akshay, K. D. Chandrasekhar, and M. Vasundhara, J. Phys. Chem. Solids 123, 327 (2018).

    Article  ADS  Google Scholar 

  26. B. Arun, V. R. Akshay, K. D. Chandrasekhar, G. R. Mutta, and M. Vasundhara, J. Magn. Magn. Mater. 472, 74 (2019).

    Article  ADS  Google Scholar 

  27. B. Arun, V. R. Akshay, K. D. Chandrasekhar, and M. Vasundhara, J. Magn. Magn. Mater. 489, 165418 (2019).

    Article  Google Scholar 

  28. B. Sudakshina, B. Arun, K. D. Chandrasekhar, H. D. Yang, and M. Vasundhara, Phys. B (Amsterdam, Neth.) 539, 14 (2018).

  29. S. Hcini, M. Boudard, S. Zemni, and M. Oumezzine, Ceram. Int. 40, 16041 (2014).

    Article  Google Scholar 

  30. B. K. Banerjee, Phys. Lett. 12, 16 (1964).

    Article  ADS  Google Scholar 

  31. S. Hcini, M. Boudard, S. Zemni, and M. Oumezzine, Ceram. Int. 41, 2042 (2015).

    Article  Google Scholar 

  32. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. Lau, A. R. Gerson, and R. S. C. Smart, Appl. Surf. Sci. 257, 2717 (2011).

    Article  ADS  Google Scholar 

  33. J. Van Elp, R. Potze, H. Eskes, R. Berger, and G. Sa-watzky, Phys. Rev. B 44, 1530 (1991).

    Article  ADS  Google Scholar 

  34. G. Narsinga Rao and J. Chen, arXiv:0705.3080 (2007).

  35. J. B. Goodenough, A. Wold, R. Arnott, and N. Menyuk, Phys. Rev. 124, 373 (1961).

    Article  ADS  Google Scholar 

  36. D. Khomskii, in Spin Electronics, Ed. by M. Ziese and M. J. Thornton (Springer, Berlin, 2001), p. 89.

    Google Scholar 

  37. M. H. Phan, S. B. Tian, S. C. Yu, and A. N. Ulyanov, J. Magn. Magn. Mater. 256, 306 (2003).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge to CSIR-NIIST for providing research facilities for carrying out this work. B. Sudakshina and B. Arun are is thankful to Council of Scientific and Industrial Research (CSIR), India for the award of Research Fellowships and also grateful to the Academy of Scientific and innovative Research (AcSIR), CSIR.

Funding

The authors would like to acknowledge the financial support received from the Council of Scientific and Industrial Research (CSIR), Government of India, sponsored project MLP0031, and Department of Science and Technology, sponsored project no. GAP232339.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vasundhara.

Ethics declarations

The authors confirm that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudakshina, B., Arun, B. & Vasundhara, M. Structural, Magnetic, and Magneto-Caloric Properties of Cu-Substituted Nd0.67Ba0.33MnO3 Manganites. Phys. Solid State 62, 902–911 (2020). https://doi.org/10.1134/S1063783420050297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420050297

Keywords:

Navigation