Skip to main content
Log in

Magnetic Properties and Surface Morphology of the Intermetallic Compound Dy2Fe10Al7 and Its Hydride

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Influence of hydrogenation on the microstructural parameters, surface topology, and temperatures of magnetic phase transitions in Dy2Fe10Al7 was studied. Thermomagnetic properties in the obtained hydride Dy2Fe10Al7H3.2 were also investigated. Hydrogenation was found not to change the Curie point of the compound Dy2Fe10Al7, but at the same time it affects remarkably the temperature of the magnetic compensation transition. The coercive force increases upon hydrogenation, and thus the magnetocrystalline anisotropy can be concluded to increase due to changes in the local environment of the dysprosium ion caused by insertion of hydrogen atoms into the crystal lattice. The relative volume change ΔV/V of the unit cell of the hydride Dy2Fe10Al7H3.2 was shown to be 3%. The investigation of the peculiarities of the structural state allowed concluding that hydrogenation causes significant modification of the microstructure, which in turn changes the physical and functional properties of the hydrogenated materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. V. Andreev, A. V. Deryagin, S. M. Zadvorkin, N. V. Kudrevatykh, V. N. Moskalev, R. Z. Levitin, Yu. F. Popov, and R. Yu. Yumaguzhin, in Physics of Magnetic Materials, Collection of Articles Ed. by D. D. Mishin (Kalinin. Gos. Univ., 1985), p. 1 [in Russian].

    Google Scholar 

  2. X. Kou, F. de Boer, R. Grössinger, G. Wiesinger, H. Suzuki, H. Kitazawa, T. Takamasu, and G. Kido, J. Magn. Magn. Mater. 177–181, 1002 (1998).

    Article  ADS  Google Scholar 

  3. B. García-Landa, P. A. Algarabel, M. R. Ibarra, F. E. Kayzel, T. H. Ahn, and J. J. M. Franse, J. Magn. Magn. Mater. 140–144, 1085 (1995).

    Article  ADS  Google Scholar 

  4. K. Takeda, T. Maeda, and T. Katayama, J. Alloys Compd. 281, 50 (1998).

    Article  Google Scholar 

  5. O. Isnard, S. Miraglia, J. Soubeyroux, D. Fruchart, and P. I'Héritier, J. Magn. Magn. Mater. 137, 151 (1994).

    Article  ADS  Google Scholar 

  6. H. Fujii and H. Sun, in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 1995), Vol. 9, Chap. 3, p. 303.

  7. K. H. J. Buschow, Rep. Prog. Phys. 40, 1179 (1977).

    Article  ADS  Google Scholar 

  8. D. Givord and R. Lemaire, IEEE Trans. Mag. 10, 109 (1974).

    Article  ADS  Google Scholar 

  9. I. S. Tereshina, S. A. Nikitin, J. Stepień-Damm, L. D. Gulay, N. Y. Pankratov, A. A. Salamova, V. N. Verbetsky, and W. Suski, J. Alloys Compd. 329, 31 (2001).

    Article  Google Scholar 

  10. P. Alvarez-Alonso, P. Gorria, J. L. Sanchez Llamazares, G. J. Cuello, I. P. Orench, J. Sanchez Marcos, G. Garbarino, M. Reiffers, and J. A. Blanco, Acta Mater. 61, 7931 (2013).

    Article  Google Scholar 

  11. O. Isnard, A. V. Andreev, O. Heczko, and Y. Skourski, J. Alloys Compd. 627 (Suppl. C), 101 (2015).

    Article  Google Scholar 

  12. J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge Univ. Press, Cambridge, 2010).

    Google Scholar 

  13. K. P. Belov, Paraprocess Effects in Ferromagnets and Antiferromagnets (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  14. G. Wiesinger and G. Hilscher, in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 2007), Vol. 17, Chap. 5.

    Google Scholar 

  15. B.-G. Shen, Z.-H. Cheng, H.-Y. Gong, B. Liang, Q.‑W. Yan, and W.-S. Zhan, Solid State Commun. 95, 813 (1995).

    Article  ADS  Google Scholar 

  16. J. L. Wang, S. J. Campbell, O. Tegus, C. Marquina, and M. R. Ibarra, Phys. Rev. B 75, 17423 (2007).

    Google Scholar 

  17. E. A. Tereshina, H. Drulis, Y. Skourski, and I. S. Tereshina, Phys. Rev. B 87, 214425 (2013).

    Article  ADS  Google Scholar 

  18. E. A. Tereshina, H. Yoshida, A. V. Andreev, I. S. Tereshina, K. Koyama, and T. Kanomata, J. Phys. Soc. Jpn. 76 (Suppl. A), 82 (2007).

    Article  Google Scholar 

  19. E. A. Tereshina, A. V. Andreev, J. Kamarád, and H. Drulis, J. Alloys Compd. 492, 1 (2010).

    Article  Google Scholar 

  20. E. A. Tereshina and A. V. Andreev, Intermetallics 18, 1205 (2010).

    Article  Google Scholar 

  21. S. Nikitin, I. Tereshina, E. Tereshina, W. Suski, and H. Drulis, J. Alloys Compd. 451, 477 (2008).

    Article  Google Scholar 

  22. E. A. Tereshina, A. V. Andreev, J. Kamarád, and O. Isnard, J. Appl. Phys. 105, 07A747 (2009).

  23. S. A. Nikitin, I. S. Tereshina, N. Yu. Pankratov, E. A. Tereshina, Yu. V. Skourski, K. P. Skokov, and Yu. G. Pastushenkov, Phys. Solid State 43, 1720 (2001).

    Article  ADS  Google Scholar 

  24. O. Isnard, D. Hautot, G. J. Long, and F. Grandjean, J. Appl. Phys. 88, 2750 (2000).

    Article  ADS  Google Scholar 

  25. H. Oesterreicher and D. McNeely, J. Less Common. Met. 53, 235 (1977).

    Article  Google Scholar 

  26. H. Oesterreicher and D. McNeely, J. Less Common. Met. 53, 245 (1977).

    Article  Google Scholar 

  27. Y. Hao, F. Wang, P. Zhang, X. Sun, and Q. W. Yan, J. Phys.: Condens. Matter 11, 6113 (1999).

    ADS  Google Scholar 

  28. T. H. Jacobs, K. H. J. Buschow, G. F. Zhou, and F. R. de Boer, Phys. B (Amsterdam, Neth.) 179, 177 (1992).

  29. S. Ma, Z. Zhong, D. Wang, J. Luo, J. Xu, Y. Huang, Y. Hou, J. He, Q. Cao, and Y. Du, Eur. Phys. J. B 86, 133 (2013).

    Article  ADS  Google Scholar 

  30. K. P. Belov and S. A. Nikitin, Phys. Status Solidi B 12, 453 (1965).

    Article  ADS  Google Scholar 

  31. C. K. Sabdenov, M. D. Davydova, K. A. Zvezdin, A. K. Zvezdin, A. V. Andreev, D. I. Gorbunov, E. A. Tereshina, Y. Skourski, J. Šebek, and I. S. Tereshina, J. Alloys Compd. 708, 1161 (2017).

    Article  Google Scholar 

  32. V. L. Mironov, Principles of Scanning Probe Microscopy (Inst. Fiz. Mikrostrukt. RAN, Nizhny Novgorod, 2005) [in Russian].

    Google Scholar 

  33. D. Płusa, R. Pfranger, and B. Wysłocki, J. Less Common. Met. 99, 87 (1984).

    Article  Google Scholar 

  34. J. Wang, F. Yang, N. Tang, X. Han, H. Pan, and J. Hu, J. Appl. Phys. 79, 2012 (1996).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 18-13-00135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Pankratov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Efimov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankratov, N.Y., Kaminskaya, T.P., Tereshina, I.S. et al. Magnetic Properties and Surface Morphology of the Intermetallic Compound Dy2Fe10Al7 and Its Hydride. Phys. Solid State 62, 808–814 (2020). https://doi.org/10.1134/S1063783420050224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420050224

Keywords:

Navigation