Skip to main content
Log in

Study of Energetic and Magnetic Properties of FexNi1 – x Monolayer Film on Nonmagnetic Metallic Substrates

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Within the variational spin density functional method, the description of the temperature and ferromagnetic ordering effects on the adsorption of atoms of transition metals placed on paramagnetic substrates at formation of a monolayer film of FexNi1 – x alloy depending on the alloy component concentration and the coating parameter θ has been accomplished for the first time. The influence of different orientations of substrate surface planes is studied. The adsorption energy of a close-packed plane is minimal for all the systems presented. It is shown that a monolayer film without mixing is formed on the Au and W substrates at large values of the coating parameter and iron concentration, while silver atoms are forced out to the surface of the Ag substrate. The comparison of values of the adsorption energy calculated at θ = 1 and T = 0 K is carried out within the variational and the first-principles approaches. The calculation of magnetic moments and parameters of exchange interaction of the FexNi1 – x bulk alloy using the Korringa–Kohn–Rostoker method is accomplished at the equilibrium values of lattice constant obtained within the first-principles calculations. The exchange interaction is of a ferromagnetic nature, it increases with the increase in nickel concentration in the nearest polytypic neighbors \(J_{1}^{{{\text{Ni}} - {\text{Fe}}}}\) and decreases in the nearest equitype neighbors \(J_{1}^{{{\text{Ni}} - {\text{Ni}}}}\). The exchange interaction between the second neighbors occurs only in equitype atoms; it is of a ferromagnetic nature in iron atoms and is weakly antiferromagnetic in nickel atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, Rep. Prog. Phys. 71, 056501 (2008).

    Article  ADS  Google Scholar 

  2. V. V. Prudnikov, P. V. Prudnikov, and M. V. Mamonova, Phys. Usp. 60, 762 (2017).

    Article  ADS  Google Scholar 

  3. M. V. Mamonova, V. V. Prudnikov, and I. A. Prudnikova, Surface Physics: Theoretical Models and Experimental Methods (CRC, UK, 2013).

    Google Scholar 

  4. V. V. Prudnikov, P. V. Prudnikov, and M. V. Mamonova, Theoretical Methods for Calculating the Structural, Energy and Magnetic Characteristics of Systems with Interfacial Interaction (Omsk. Gos. Univ., Omsk, 2017) [in Russian].

    Google Scholar 

  5. S. Tumansky, Thin Film Magnetoresistive Sensors (IOP Publ., Bristol, 2001).

    Book  Google Scholar 

  6. P. P. Freitas, R. Ferreira, S. Cardoso, and F. Cardoso, J. Phys.: Condens. Matter 19, 165221 (2007).

    ADS  Google Scholar 

  7. I. Ennen, D. Kappe, T. Rempel, C. Glenske, and A. Hutten, Sensors 16, 904 (2016).

    Article  Google Scholar 

  8. B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994).

    Article  ADS  Google Scholar 

  9. M. A. Correa, F. Bohn, C. Chesman, R. B. da Silva, A. D. C. Viegas, and R. L. Sommer, J. Phys. D 43, 295004 (2010).

    Article  Google Scholar 

  10. S. O. Volchkov, A. A. Yuvchenko, V. N. Lepalovskij, E. Fernandez, and G. V. Kurlyandskaya, Solid State Phenom. 190, 609 (2012).

    Article  Google Scholar 

  11. J. Schleiwies, G. Schmitz, S. Heitmann, and A. Hutten, Appl. Phys. Lett. 78, 3439 (2001).

    Article  ADS  Google Scholar 

  12. A. V. Svalov, V. O. Vaskovskiy, A. Larranaga, and G. V. Kurlyandskaya, Solid State Phenom. 233–234, 591 (2015).

    Article  Google Scholar 

  13. R. A. Lopez, J. A. Gonzalez, J. P. Andres, A. V. Svalov, and G. V. Kurlyandskaya, Nanomaterials 8, 780 (2018).

    Article  Google Scholar 

  14. M. V. Mamonova, N. S. Morozov, and V. V. Prudnikov, Phys. Solid State 51, 2169 (2009).

    Article  ADS  Google Scholar 

  15. S. P. Klimov, M. V. Mamonova, and V. V. Prudnikov, Solid State Phenom. 190, 27 (2012).

    Article  Google Scholar 

  16. V. Blum, Ch. Rath, S. Muller, L. Hammer, and K. Heinz, Phys. Rev. B 59, 15966 (1999).

    Article  ADS  Google Scholar 

  17. K. He, L. J. Zhang, X. C. Ma, J. F. Jia, Q. K. Xue, and Z. Q. Qiu, Phys. Rev. Lett. 72, 155432 (2005).

    Google Scholar 

  18. M. V. Mamonova, V. V. Prudnikov, and D. V. Pilipenko, J. Phys.: Conf. Ser. 681, 012039 (2016).

    Google Scholar 

  19. X. Fan, J. Wu, Y. P. Chen, M. J. Jerry, H. W. Zhang, and J. Q. Xiao, Nat. Commun. 4, 1799 (2013).

    Article  ADS  Google Scholar 

  20. P. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  21. T. Huhne, C. Zecha, and H. Ebert, Phys. Rev. B 58, 10238 (1998).

    Article  Google Scholar 

  22. H. P. J. Wijn, Magnetic Properties of Metals (Springer, Berlin, 1991).

    Book  Google Scholar 

  23. V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals (Pergamon, New York, 1978).

    Google Scholar 

Download references

Funding

The paper was supported by the Russian Foundation for Basic Research, project nos. 17-02-00279 and 18-42-550003, and the Grant of the President of Russian Federation MD-6868.2018.2. The computing resources of the Resource Sharing Center of the Far Eastern Branch, Russian Academy of Sciences (Khabarovsk), were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Mamonova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamonova, M.V. Study of Energetic and Magnetic Properties of FexNi1 – x Monolayer Film on Nonmagnetic Metallic Substrates. Phys. Solid State 62, 777–784 (2020). https://doi.org/10.1134/S1063783420050170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420050170

Keywords:

Navigation