Skip to main content
Log in

Mg2Si Silicide under Pressure: First-Principles Evolution Search Results

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract—

The search for optimal Mg2Si silicide structures has been performed using the software suite implementing the evolution algorithms on the basis of density functional theory (DFT). It has been shown that the well-known hexagonal structure of P63/mmc symmetry is converted under the pressure P ~ 34 GPa into a monoclinic structure of C2/m symmetry, which is stable up to the pressures P < 76 GPa. This structure is replaced by the orthorhombic Pmmm structure, which is retained up to the pressures P ~ 235 GPa and further gives way to a monoclinic structure of P2/m symmetry. It is demonstrated how the structural transitions P63/mmcC2/mPmmmP2/m occur under pressure at the atomic level. The structural phase diagram of Mg2Si silicide was plotted within a pressure range of 0–240 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. Ma, M. I. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle, and V. Prakapenka, Nature (London, U.K.) 458, 182 (2009).

    Article  ADS  Google Scholar 

  2. A. R. Oganov, Y. M. Ma, Y. Xu, I. Errea, A. Bergara, and A. O. Lyakhov, Proc. Natl. Acad. Sci. 107, 7646 (2010).

    Article  ADS  Google Scholar 

  3. W. Zhang, A. R. Oganov, A. F. Goncharov, Q. Zhu, S. E. Boulfelfel, A. O. Lyakhov, E. Stavrou, M. Somayazulu, V. Prakapenka, and Z. Konôpková, Science (Washington, DC, U. S.) 342, 1502 (2013).

    Article  ADS  Google Scholar 

  4. C. J. Pickard and R. J. Needs, J. Phys.: Condens. Matter 23, 053201 (2011).

    ADS  Google Scholar 

  5. S. Goedecker, J. Chem. Phys. 120, 9911 (2004).

    Article  ADS  Google Scholar 

  6. S. Goedecker, W. Hellmann, and T. Lenosky, Phys. Rev. Lett. 95, 055501 (2005).

    Article  ADS  Google Scholar 

  7. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Science (Washington, DC, U. S.) 220, 671 (1983).

    Article  ADS  Google Scholar 

  8. V. Czerny, J. Optim. Theor. Appl. 45, 41 (1985).

    Article  Google Scholar 

  9. R. Martoňák, A. Laio, and M. Parrinello, Phys. Rev. Lett. 90, 075503 (2003).

    Article  ADS  Google Scholar 

  10. R. Martoňák, D. Donadio, A. R. Oganov, and M. Parrinello, Nat. Mater. 5, 623 (2006).

    Article  ADS  Google Scholar 

  11. Modern Methods of Crystal Structure Prediction, Ed. by A. R. Oganov (Wiley, Hoboken, NJ, 2011).

    Google Scholar 

  12. M. Reilly, R. I. Cooper, C. S. Adjiman, S. Bhattacharya, A. D. Boese, and J. G. Brandenburg, Acta Crystallogr., B 72, 439 (2016).

    Article  Google Scholar 

  13. N. O. Folland, Phys. Rev. 158, 764 (1967).

    Article  ADS  Google Scholar 

  14. A. Stella, A. D. Brothers, R. H. Hopkins, and W. Lynch, Phys. Status Solidi B 23, 697 (1967).

    Article  ADS  Google Scholar 

  15. G. Singh, A. Bhalla, M. M. Mahmoud, R. H. R. Castro, N. P. Bansal, D. Zhu, and J. P. Singh, Processing, Properties, and Design of Advanced Ceramics and Composites, Vol. 259 of Ceramic Transactions, Ed. by Y. Wu (Wiley, Hoboken, NJ, 2016).

  16. Q. Deng, Z. Wang, S. Wang, and G. Shao, Solar Energy 158, 654 (2017).

    Article  ADS  Google Scholar 

  17. E. A. Owen and G. D. Preston, Proc. Phys. Soc. 36, 341 (1924).

    Google Scholar 

  18. J. Hao, B. Zou, P. W. Zhu, C. X. Gao, Y. W. Li, D. Liu, K. Wang, W. W. Lei, Q. L. Cui, and G. T. Zou, Solid State Commun. 149, 689 (2009).

    Article  ADS  Google Scholar 

  19. T. D. Huan, V. N. Tuoc, N. B. Le, N. V. Minh, and L. M. Woods, Phys. Rev. B 93, 094109 (2016).

    Article  ADS  Google Scholar 

  20. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  21. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).

    Article  ADS  Google Scholar 

  22. A. R. Oganov, A. O. Lyakhov, and M. Valle, Acc. Chem. Res. 44, 227 (2011).

    Article  Google Scholar 

  23. A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, Comp. Phys. Commun. 184, 1172 (2013).

    Article  ADS  Google Scholar 

  24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  25. Yu. Luniakov, Solid State Phenom. 249, 9 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on the equipment of the Shared Facilities Center “Far Eastern Computational Recourse” (www.cc.dvo.ru).

Funding

This work was financially supported by the Program of Fundamental Studies “Far East” of the Far Eastern Branch of the Russian Academy of Sciences (grant no. 18-3-022) within the framework of state task no. 0262-2019-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Lunyakov.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunyakov, Y.V. Mg2Si Silicide under Pressure: First-Principles Evolution Search Results. Phys. Solid State 62, 880–884 (2020). https://doi.org/10.1134/S1063783420050157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420050157

Keywords:

Navigation