Skip to main content
Log in

Amorphous Ni50Ti50 Alloy with Nanoporous Structure Generated by Ultrafast Isobaric Cooling

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Amorphous metallic foams are prospective materials due to unique combination of their mechanical and energy-absorption properties. In the present work, atomistic dynamics simulations are performed under isobaric conditions with the pressure p = 1.0 atm in order to study how cooling with extremely high rates (5 × 1013–5 × 1014 K/s) affects the formation of pores in amorphous titanium nickelide. For equilibrium liquid phase, vaporization temperature Tb and the equation of states in the form of ρ(T) are determined. It is found that the porosity of this amorphous solid does not depend on cooling at such high rates, whereas the pore morphology depends on the magnitude of the cooling rate. The obtained results will be in demand in study of mechanical properties of amorphous metallic foams with a nanoporous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. W. Mwangi, L. T. Nguyen, V. D. Bui, T. Berger, H. Zeidler, and A. Schubert, J. Manuf. Process. 38, 355 (2019).

    Article  Google Scholar 

  2. S. A. Shabalovskaya, Int. Mater. Rev. 46, 233 (2001).

    Article  Google Scholar 

  3. K. Otsuka and X. Ren, Prog. Mater. Sci. 50, 511 (2005).

    Article  Google Scholar 

  4. Y. Qiu, H. Yu, and M. L. Young, Shape Memory Superelast. 1, 479 (2015).

    Article  ADS  Google Scholar 

  5. M. A. Qidwai, P. B. Entchev, D. C. Lagoudas, and V. G. DeGiorgi, Int. J. Solid Struct. 38, 8653 (2001).

    Article  Google Scholar 

  6. G. Ryan, A. Pandit, and D. P. Apatsidis, Biomaterials 27, 2651 (2006).

    Article  Google Scholar 

  7. A. Bansiddhi, T. D. Sargeant, S. I. Stupp, and D. C. Dunand, Acta Biomater. 4, 773 (2008).

    Article  Google Scholar 

  8. G. Sneddon, A. Greenaway, and H. H. P. Yiu, Adv. Energy Mater. 4, 1301873 (2014).

    Article  Google Scholar 

  9. T. Fujita, Sci. Technol. Adv. Mater. 18, 724 (2017).

    Article  Google Scholar 

  10. A. E. Evans, J. W. Hutchinson, and M. F. Ashby, Prog. Mater. Sci. 43, 171 (1999).

    Article  Google Scholar 

  11. J. Schroers, C. Veazey, M. D. Demetriou, and W. L. Johnson, J. Appl. Phys. 96, 7723 (2004).

    Article  ADS  Google Scholar 

  12. D. V. Dudina, B. B. Bokhonov, and E. A. Olevsky, Materials 12, 541 (2019).

    Article  ADS  Google Scholar 

  13. I. Shishkovsky, I. Yadroitsev, and I. Smurov, Phys. Proc. 39, 447 (2012).

    Article  ADS  Google Scholar 

  14. P. S. Liu and G. F. Chen, Porous Materials Processing and Applications, 1st ed. (Elsevier, Oxford, UK, 2014).

    Google Scholar 

  15. J. Schroers, C. Veazey, and W. L. Johnson, Appl. Phys. Lett. 82, 370 (2003).

    Article  ADS  Google Scholar 

  16. W.-S. Ko, B. Grabowski, and J. Neugebauer, Phys. Rev. B 92, 134107 (2015).

    Article  ADS  Google Scholar 

  17. Z.-Y. Zeng, C.-E. Hu, L.-C. Cai, X.-R. Chen, and F.‑Q. Jing, J. Appl. Phys. 109, 043503 (2011).

    Article  ADS  Google Scholar 

  18. L. Zhong, J. Wang, H. Sheng, Z. Zhang, and S. X. Mao, Nature (London, U.K.) 512, 177 (2014).

    Article  ADS  Google Scholar 

  19. B. N. Galimzyanov, V. I. Ladyanov, and A. V. Mokshin, J. Cryst. Growth 526, 125214 (2019).

    Article  Google Scholar 

  20. A. V. Mokshin, B. N. Galimzyanov, and D. T. Yarullin, JETP Lett. 110, 511 (2019).

    Article  ADS  Google Scholar 

  21. F. A. L. Dullien, Porous Media. Fluid Transport and Pore Structure (Academic, New York, 1992).

    Google Scholar 

  22. M. Singh, J. Kaiser, and H. Hahn, Batteries 2, 35 (2016).

    Article  Google Scholar 

  23. D. Qu, AIP Conf. Proc. 1597, 14 (2014).

    Article  ADS  Google Scholar 

  24. J. Song, J. Kim, T. Kang, and D. Kim, Sci. Rep. 7, 42521 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the Russian Science Foundation (project no. 19-12-00022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Galimzyanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galimzyanov, B.N., Mokshin, A.V. Amorphous Ni50Ti50 Alloy with Nanoporous Structure Generated by Ultrafast Isobaric Cooling. Phys. Solid State 62, 744–747 (2020). https://doi.org/10.1134/S1063783420050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420050078

Keywords:

Navigation