Skip to main content
Log in

Features of the Pulsed Magnetization Switching in a High-Coercivity Material Based on ε-Fe2O3 Nanoparticles

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The magnetic structure of the ε-Fe2O3 iron oxide polymorphic modification is collinear ferrimagnetic in the range from room temperature to ~150 K. As the temperature decreases, ε-Fe2O3 undergoes a magnetic transition accompanied by a significant decrease in the coercivity Hc and, in the low-temperature range, the compound has a complex incommensurate magnetic structure. We experimentally investigated the dynamic magnetization switching of the ε-Fe2O3 nanoparticles with an average size of 8 nm in the temperature range of 80–300 K, which covers different types of the magnetic structure of this iron oxide. A bulk material consisting of xerogel SiO2 with the ε-Fe2O3 nanoparticles embedded in its pores was examined. The magnetic hysteresis loops under dynamic magnetization switching were measured using pulsed magnetic fields Hmax of up to 130 kOe by discharging a capacitor bank through a solenoid. The coercivity Нс upon the dynamic magnetization switching noticeably exceeds the Нс value under the quasi-static conditions. This is caused by the superparamagnetic relaxation of magnetic moments of particles upon the pulsed magnetization switching. In the range from room temperature to ~ 150 K, the external field variation rate dH/dt is the main parameter that determines the behavior of the coercivity under the dynamic magnetization switching. It is the behavior that is expected for a system of single-domain ferro- and ferrimagnetic particles. Under external conditions (at a temperature of 80 K) when the ε-Fe2O3 magnetic structure is incommensurate, the coercivity during the pulsed magnetization switching depends already on the parameter dH/dt and is determined, to a great extent, by the maximum applied field Hmax. Such a behavior atypical of systems of ferrimagnetic particles is caused already by the dynamic spin processes inside the ε-Fe2O3 particles during fast magnetization switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. Tućek, R. Zboril, A. Namai, and S. Ohkoshi, Chem. Mater. 22, 6483 (2010).

    Article  Google Scholar 

  2. L. Machala, J. Tućek, and R. Zboril, Chem. Mater. 23, 3255 (2011).

    Article  Google Scholar 

  3. M. Gich, A. Roig, C. Frontera, E. Molins, J. Sort, M. Popovici, G. Chouteau, D. Martın y Marero, and J. Nogues, J. Appl. Phys. 98, 044307 (2005).

    Article  ADS  Google Scholar 

  4. S. Sakurai, S. Kuroki, H. Tokoro, K. Hashimoto, and S. Ohkoshi, Adv. Funct. Mater. 17, 2278 (2007).

    Article  Google Scholar 

  5. S. Ohkoshi, A. Namai, K. Imoto, M. Yoshikiyo, W. Tarora, K. Nakagawa, M. Komine, Y. Miyamoto, T. Nasu, S. Oka, and H. Tokoro, Sci. Rep. 5, 14414 (2015).

    Article  ADS  Google Scholar 

  6. S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, Angew. Chem. Int. Ed. 46, 8392 (2007).

    Article  Google Scholar 

  7. A. I. Dmitriev, O. V. Koplak, A. Namai, H. Tokoro, S. Ohkoshi, and R. B. Morgunov, Phys. Solid State 56, 1795 (2014).

    Article  ADS  Google Scholar 

  8. S. Ohkoshi, A. Namai, T. Yamaoka, M. Yoshikiyo, K. Imoto, T. Nasu, S. Anan, Y. Umeta, K. Nakagawa, and H. Tokoro, Sci. Rep. 6, 27212 (2016).

    Article  ADS  Google Scholar 

  9. A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, J. Am. Chem. Soc. 131, 1170 (2009).

    Article  Google Scholar 

  10. S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, Angew. Chem. Int. Ed. 46, 8392 (2007).

    Article  Google Scholar 

  11. J. L. García-Muñoz, A. Romaguera, F. Fauth, J. No-gués, and M. Gich, Chem. Mater. 29, 9705 (2017).

    Article  Google Scholar 

  12. D. A. Balaev, A. A. Dubrovskiy, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Mart’yanov, Phys. Solid State 61, 345 (2019).

    Article  ADS  Google Scholar 

  13. M. Kurmoo, J.-L. Rehspringer, A. Hutlova, C. D’Orlans, S. Vilminot, C. Estournes, and D. Niznansky, Chem. Mater. 17, 1106 (2005).

    Article  Google Scholar 

  14. M. Gich, C. Frontera, A. Roig, E. Taboada, E. Molins, H. R. Rechenberg, J. D. Ardisson, W. A. A. Macedo, C. Ritter, V. Hardy, J. Sort, V. Skumryev, and J. Nogués, Chem. Mater. 18, 3889 (2006).

    Article  Google Scholar 

  15. E. Tronc, S. Chaneac, and J. P. Jolivet, J. Solid State Chem. 139, 93 (1998).

    Article  ADS  Google Scholar 

  16. N. A. Usov and Yu. B. Grebenshchikov, J. Appl. Phys. 106, 023917 (2009).

    Article  ADS  Google Scholar 

  17. E. L. Verde, G. T. Landi, J. A. Gomes, M. H. Sousa, and A. F. Bakuzis, J. Appl. Phys. 111, 123902 (2012).

    Article  ADS  Google Scholar 

  18. J. Carrey, B. Mehdaoui, and M. Respaud, J. Appl. Phys. 109, 083921 (2011).

    Article  ADS  Google Scholar 

  19. A. S. Kamzin, D. S. Nikam, and S. H. Pawar, Phys. Solid State 59, 156 (2017).

    Article  ADS  Google Scholar 

  20. A. S. Kamzin, Phys. Solid State 58, 532 (2016).

    Article  ADS  Google Scholar 

  21. A. M. Shutyi and D. I. Sementsov, Phys. Solid State 61, 1736 (2019).

    Article  ADS  Google Scholar 

  22. A. M. Shutyi and D. I. Sementsov, J. Exp. Theor. Phys. 129, 248 (2019).

    Article  ADS  Google Scholar 

  23. A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, O. A. Bayukov, O. N. Pletnev, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 118 (2015).

  24. D. A. Balaev, I. S. Poperechny, A. A. Krasikov, K. A. Shaikhutdinov, A. A. Dubrovskiy, S. I. Popkov, A. D. Balaev, S. S. Yakushkin, G. A. Bukhtiyarova, O. N. Martyanov, and Yu. L. Raikher, J. Appl. Phys. 117, 063908 (2015).

    Article  ADS  Google Scholar 

  25. I. S. Poperechny, Yu. L. Raikher, and V. I. Stepanov, Phys. Rev. B 82, 174423 (2010).

    Article  ADS  Google Scholar 

  26. I. S. Poperechny, Yu. L. Raikher, and V. I. Stepanov, Phys. B (Amsterdam, Neth.) 435, 58 (2014).

  27. S. S. Yakushkin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, Yu. V. Knyazev, O. A. Bayukov, V. L. Kirillov, R. D. Ivantsov, I. S. Edelman, and O. N. Martyanov, Ceram. Int. 44, 17852 (2018).

    Article  Google Scholar 

  28. Yu. V. Knyazev, D. A. Balaev, V. L. Kirillov, O. A. Bayukov, and O. N. Mart’yanov, JETP Lett. 108, 527 (2018).

    Article  ADS  Google Scholar 

  29. A. D. Balaev, Yu. V. Boyarshinov, M. M. Karpenko, and B. P. Khrustalev, Prib. Tekh. Eksp., No. 3, 167 (1985).

  30. S. S. Yakushkin, A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 111, 44312 (2012).

    Article  Google Scholar 

  31. I. Edelman, J. Kliava, O. Ivanova, R. Ivantsov, D. Velikanov, V. Zaikovskii, E. Petrakovskaja, Y. Zubavichus, and S. Stepanov, J. Non-Cryst. Solids 506, 68 (2019).

    Article  ADS  Google Scholar 

  32. O. S. Ivanova, R. D. Ivantsov, I. S. Edelman, E. A. Petrakovskaja, D. A. Velikanov, Y. V. Zubavichus, V. I. Zaikovskii, and S. A. Stepanov, J. Magn. Magn. Mater. 401, 880 (2016).

    Article  ADS  Google Scholar 

  33. D. A. Balaev, S. S. Yakushkin, A. A. Dubrovskii, G. A. Bukhtiyarova, K. A. Shaikhutdinov, and O. N. Mart’yanov, Tech. Phys. Lett. 42, 347 (2016).

    Article  ADS  Google Scholar 

  34. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskii, A. D. Balaev, S. I. Popkov, V. L. Kirillov, and O. N. Martyanov, J. Supercond. Nov. Magn. 32, 405 (2019).

    Article  Google Scholar 

  35. D. A. Balaev, A. A. Krasikov, D. A. Velikanov, S. I. Popkov, N. V. Dubynin, S. V. Stolyar, V. P. Ladygina, and R. N. Yaroslavtsev, Phys. Solid State 60, 1973 (2018).

    Article  ADS  Google Scholar 

  36. S. Morup, D. E. Madsen, C. Fradsen, C. R. H. Bahl, and M. F. Hansen, J. Phys.: Condens. Matter 19, 213202 (2007).

    ADS  Google Scholar 

  37. Yu. L. Raikher and V. I. Stepanov, J. Phys.: Condens. Matter 20, 204120 (2008).

    ADS  Google Scholar 

  38. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. I. Popkov, S. V. Stolyar, O. A. Bayukov, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, J. Magn. Magn. Mater. 410, 71 (2016).

    Article  Google Scholar 

  39. S. I. Popkov, A. A. Krasikov, D. A. Velikanov, V. L. Kirillov, O. N. Martyanov, and D. A. Balaev, J. Magn. Magn. Mater. 483, 21 (2019).

    Article  ADS  Google Scholar 

  40. S. I. Popkov, A. A. Krasikov, A. A. Dubrovskiy, M. N. Volochaev, V. L. Kirillov, O. N. Martyanov, and D. A. Balaev, J. Appl. Phys. 126, 103904 (2019).

    Article  ADS  Google Scholar 

  41. R. H. Kodama and A. E. Berkowitz, Phys. Rev. B 59, 6321 (1999).

    Article  ADS  Google Scholar 

  42. N. J. O. Silva, A. Millan, F. Palacio, E. Kampert, U. Zeitler, and V. S. Amaral, Phys. Rev. B 79, 104405 (2009).

    Article  ADS  Google Scholar 

  43. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. I. Popkov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, J. Appl. Phys. 120, 183903 (2016).

    Article  ADS  Google Scholar 

  44. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A 240, 599 (1948).

    Google Scholar 

  45. P. Brázda, D. Nižǎnsky, J.-L. Rehspringer, and J. P. Vejpravová, J. Sol-Gel Sci. Technol. 51, 78 (2009).

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Krai, and the Krasnoyarsk Territorial Foundation for Support of Scientific and R&D Activities, project no. 18-42-240012 “Magnetization Switching of Magnetic Nanoparticles in Strong Pulsed Magnetic Fields: New Approach to Studying the Dynamic Effects Related to the Magnetization of Magnetic Nanoparticles.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Popkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popkov, S.I., Krasikov, A.A., Semenov, S.V. et al. Features of the Pulsed Magnetization Switching in a High-Coercivity Material Based on ε-Fe2O3 Nanoparticles. Phys. Solid State 62, 445–453 (2020). https://doi.org/10.1134/S1063783420030166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420030166

Keywords:

Navigation