Skip to main content

Effect of Magnetic Co–CoO Particles on the Carrier Transport in Monolayer Graphene


Electrodeposition of cobalt on monolayer graphene synthesized by chemical vapor deposition produces Co–CoO/graphene composite structures, which is accompanied by increases in the electrical resistance and magnetoresistance. We show that the observed magnetoresistance effect is caused by two competing contributions: negative (NMR) and positive (PMR) magnetoresistance. In weak magnetic fields, the NMR is described by quantum localization correction to the Drude model of conductivity in graphene. The enhancement of PMR observed in strong magnetic fields is related to the Lorentz mechanism in Co–CoO particles.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.


  1. 1

    I. S. Zhidkov, N. A. Skorikov, A. V. Korolev, A. I. Kukharenko, E. Z. Kurmaev, V. E. Fedorov, and S. O. Cholakh, Carbon 91, 298 (2015).

    Article  Google Scholar 

  2. 2

    P. U. Asshoff, J. L. Sambricio, A. P. Rooney, S. Slizovskiy, A. Mishchenko, A. M. Rakowski, E. W. Hill, A. K. Geim, S. J. Haigh, V. I. Fal’ko, I. J. Vera-Marun, and I. V. Grigorieva, 2D Mater. 4, 031004 (2017).

  3. 3

    M. Z. Iqbal, M. W. Iqbal, J. H. Lee, Y. S. Kim, S. Chun, and J. Eom, Nano Res. 6, 373 (2013).

    Article  Google Scholar 

  4. 4

    V. C. De Franco, G. M. B. Castro, J. Corredor, D. Men-des, and J. E. Schmidt, Carbon Lett. 21, 16 (2017).

    Article  Google Scholar 

  5. 5

    V. G. Bayev, J. A. Fedotova, J. V. Kasiuk, S. A. Vorobyova, A. A. Sohor, I. V. Komissarov, N. G. Kovalchuk, S. L. Prischepa, N. I. Kargin, M. Andrulevičius, J. Przewoznik, Cz. Kapusta, O. A. Ivashkevich, S. I. Tyutyunnikov, N. N. Kolobylina, and P. V. Guryeva, Appl. Surf. Sci. 440, 1252 (2018).

    ADS  Article  Google Scholar 

  6. 6

    B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, J. Phys. C 15, 7367 (1982).

    ADS  Article  Google Scholar 

  7. 7

    J. Jobst, D. Waldmann, I. V. Gornyi, A. D. Mirlin, and H. B. Weber, Phys. Rev. Lett. 108, 106601 (2012).

    ADS  Article  Google Scholar 

  8. 8

    S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, Phys. Rev. Lett. 97, 016801 (2006).

    ADS  Article  Google Scholar 

  9. 9

    B. I. Shklovskii and A. L. Efros, Electronic properties of Doped Semiconductors, Vol. 45 of Springer Ser. Solid-State Sci. (Springer, Heidelberg, 1984).

  10. 10

    B. I. Shklovskii, Semiconductors 6, 1964 (1973).

    Google Scholar 

  11. 11

    N. Mikoshiba, J. Phys. Chem. Solids 24, 341 (1963).

    ADS  Article  Google Scholar 

  12. 12

    S. A. Solin and L. R. Ram-Mohan, in Handbook of Magnetism and Advanced Magnetic Materials (Am. Cancer Soc., 2007), p. 19.

    Google Scholar 

  13. 13

    H. M. So, J. H. Mun, G. S. Bang, T. Y. Kim, B. J. Cho, and C. W. Ahn, Carbon Lett. 13, 56 (2012).

    Article  Google Scholar 

  14. 14

    A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    ADS  Article  Google Scholar 

  15. 15

    V. T. Nguyen, H. D. Le, V. C. Nguyen, T. T. T. Ngo, D. Q. Le, X. N. Nguyen, and N. M. Phan, Adv. Nat. Sci.: Nanosci. Nanotechnol. 4, 035012 (2013).

    ADS  Google Scholar 

  16. 16

    X. Dong, P. Wang, W. Fang, C.-Y. Su, Y.-H. Chen, L.‑J. Li, W. Huang, and P. Chen, Carbon 49, 3672 (2011).

    Article  Google Scholar 

  17. 17

    I. Shlimak, A. Haran, E. Zion, T. Havdala, Yu. Kaganovskii, A. V. Butenko, L. Wolfson, V. Richter, D. Na-veh, A. Sharoni, E. Kogan, and M. Kaveh, Phys. Rev. B 91, 045414 (2015).

    ADS  Article  Google Scholar 

  18. 18

    H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, J. Raman Spectrosc. 40, 1791 (2009).

    ADS  Article  Google Scholar 

  19. 19

    R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus, Adv. Phys. 60, 413 (2011).

    ADS  Article  Google Scholar 

  20. 20

    R. D. Gomez, M. C. Shih, R. M. H. New, R. F. W. Pease, and R. L. White, J. Appl. Phys. 80, 342 (1996).

    ADS  Article  Google Scholar 

  21. 21

    R. M. H. New, J. Vac. Sci. Technol. B 13, 1089 (1995).

    Article  Google Scholar 

  22. 22

    P. Ares, M. Jaafar, A. Gil, J. Gõmez-Herrero, and A. Asenjo, Small 11, 4731 (2015).

    Article  Google Scholar 

  23. 23

    J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baró, Phys. Rep. 422, 65 (2005).

    ADS  Article  Google Scholar 

  24. 24

    R. López Antón, J. A. González, J. P. Andrés, J. Canales-Vázquez, J. A. de Toro, and J. M. Riveiro, Nanotechnology 25, 105702 (2014).

    ADS  Article  Google Scholar 

  25. 25

    S. Sako, K. Ohshima, M. Sakai, and S. Bandow, Surf. Rev. Lett. 3, 109 (1996).

    ADS  Article  Google Scholar 

  26. 26

    K. Takehana, Y. Imanaka, E. Watanabe, H. Oosato, D. Tsuya, Y. Kim, and Ki-Seok An, Curr. Appl. Phys. 17, 474 (2017).

    ADS  Article  Google Scholar 

  27. 27

    V. M. Pudalov, Proc. Int. Sch. Phys. “Enrico Fermi” 157, 335 (2004).

    Google Scholar 

  28. 28

    E. Zion, A. Haran, A. Butenko, L. Wolfson, Y. Kaganovskii, T. Havdala, A. Sharoni, D. Naveh, V. Richter, M. Kaveh, E. Kogan, and I. Shlimak, Graphene 4, 45 (2015).

    Article  Google Scholar 

  29. 29

    T. A. Polyanskaya and Yu. V. Shmartsev, Sov. Phys. Semicond. 23, 1 (1989).

    Google Scholar 

  30. 30

    V. K. Tewary and B. Yang, Phys. Rev. B 79, 125416 (2009).

    ADS  Article  Google Scholar 

  31. 31

    F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008).

    ADS  Article  Google Scholar 

  32. 32

    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Oxford Univ. Press, Oxford, 1979).

    Google Scholar 

  33. 33

    R. V. Gorbachev, F. V. Tikhonenko, A. S. Mayorov, D. W. Horsell, and A. Savchenko, Phys. Rev. Lett. 98, 176805 (2007).

    ADS  Article  Google Scholar 

  34. 34

    K. Kechedzhi, E. Mccann, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Eur. Phys. J. Spec. Top. 148, 39 (2007).

    Article  Google Scholar 

  35. 35

    E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).

    ADS  Article  Google Scholar 

  36. 36

    B. L. Altshuler and A. G. Aronov, Mod. Probl. Condens. Matter Sci. 10, 1 (1985).

    Article  Google Scholar 

  37. 37

    R. Oppermann, M. J. Schmidt, and D. Sherrington, Phys. Rev. Lett. 98, 127201 (2007).

    ADS  Article  Google Scholar 

  38. 38

    A. V. Germanenko, G. M. Minkov, and O. E. Rut, Phys. Rev. B 64, 165404 (2001).

    ADS  Article  Google Scholar 

  39. 39

    C. W. J. Beenakker and H. V. Houten, Solid State Phys. 44, 1 (1991).

    Article  Google Scholar 

  40. 40

    B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).

    ADS  Article  Google Scholar 

Download references


The work was supported by the State Committee on Science and Technology, Republic of Belarus (agreement no. F18PLShG-005), within the state research programs “Photonics and Opto- and Microelectronics” (assignment no. 3.3.01), and within a contract (no. 08626319/182161170-74) with the Joint Institute for Nuclear Research, Russia.

Author information



Corresponding author

Correspondence to A. A. Kharchanka.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fedotova, J.A., Kharchanka, A.A., Fedotov, A.K. et al. Effect of Magnetic Co–CoO Particles on the Carrier Transport in Monolayer Graphene. Phys. Solid State 62, 368–377 (2020).

Download citation


  • graphene
  • cobalt
  • cobalt oxide
  • carrier transport