Skip to main content
Log in

Simulation of Uniaxial Deformation of Magnesium Nanocrystals of “Rigid” and “Soft” Orientations

  • MECHANICAL PROPERTIES, PHYSICS OF STRENGTH, AND PLASTICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Atomistic simulation of high-rate deformation (\({v}\) = 3 × 108 s–1) by compressing perfect and defect (5% of vacancies and 5% of hydrogen impurity atoms) magnesium nanocrystals of “rigid” [0001] and “soft” [\(1\bar {1}01\)] orientations is performed at T = 300–375 K using three different interatomic interaction potentials. The free surface microrelief evolution of magnesium nanocrystals during plastic flow is shown. Stress σ–strain ε diagrams are constructed. The strain dependences of the scalar dislocation density are determined; the dependences of the strain rate \(\dot {\varepsilon }\) on the strain measure ε are constructed. The potential energy variation during deformation is considered. The formation of barriers causing the anomalous behavior of the strain rate is discussed. The effect of vacancies and hydrogen atoms on the shape of stress–strain curves, dislocation structure, and scalar dislocation density is shown. Conclusions about the effect of the type of the interatomic interaction potential on calculated characteristics are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. J. Robson, Metall. Mater. Trans. A 45, 5226 (2014).

    Article  Google Scholar 

  2. E. W. Kelly and W. F. Hosford, Trans. Met. Soc. AIME 242, 5 (1968).

    Google Scholar 

  3. J. Zhang and S. P. Joshi, J. Mech. Phys. Solids 60, 945 (2012).

    Article  ADS  Google Scholar 

  4. W. F. Shelly and R. R. Nash, Trans. Metall. Soc. AIME 218, 416 (1960).

    Google Scholar 

  5. B. A. Grinberg, M. A. Ivanov, O. V. Antonova, A. M. Vlasova, N. A. Kruglikov, and A. V. Plotnikov, Russ. Phys. J. 54, 906 (2011).

    Article  Google Scholar 

  6. B. A. Grinberg, M. A. Ivanov, O. V. Antonova, and A. M. Vlasova, Crystallogr. Rep. 57, 541 (2012).

    Article  ADS  Google Scholar 

  7. R. L. Bell and R. Cahn, Proc. R. Soc. A 239, 494 (1957).

    ADS  Google Scholar 

  8. T. Obara, H. Yoshinga, and S. Morozumi, Acta Met. 21, 845 (1973).

    Article  Google Scholar 

  9. J. F. Stohr and J. P. Poirier, Philos. Mag. 25, 1313 (1972).

    Article  ADS  Google Scholar 

  10. F. F. Lavrentev and Yu. A. Pochil, Mater. Sci. Eng. 32, 121 (1978).

    Article  Google Scholar 

  11. C. M. Bayer, B. Le, and B. Cao, Scr. Mater. 62, 536 (2010).

    Article  Google Scholar 

  12. T. Kitahara, S. Ando, M. Tsushida, H. Kitahara, and H. Tonda, Key Eng. Mater. 345–346, 129 (2007).

    Article  Google Scholar 

  13. A. M. Vlasova and A. Yu. Nikonov, Crystallogr. Rep. 63, 331 (2018).

    Article  ADS  Google Scholar 

  14. X.-Z. Tang, Y.-F. Guo, S. Xu, and Y.-S. Wang, Philos. Mag. 95, 2013 (2015).

    Article  ADS  Google Scholar 

  15. B. Syed, J. Geng, R. K. Mishra, and K. S. Kumar, Scr. Mater. 67, 700 (2012).

    Article  Google Scholar 

  16. P. B. Hirsch and J. S. Lally, Philos. Mag. 12, 595 (1965).

    Article  ADS  Google Scholar 

  17. S. R. Agnew, J. A. Horton, and M. H. Yoo, Metall. Mater. Trans. A 33, 851 (2002).

    Article  Google Scholar 

  18. J. Geng, M. F. Chisholm, R. K. Mishra, and K. S. Kumar, Philos. Mag. Lett. 94, 377 (2014).

    Article  ADS  Google Scholar 

  19. B. Li, P. Yan, M. Sui, and E. Ma, Acta Mater. 58, 173 (2010).

    Article  Google Scholar 

  20. A. Chapuis and J. H. Driver, Acta Mater. 59, 1986 (2011).

    Article  Google Scholar 

  21. T. Nogaret, W. Curtin, J. Yasi, L. Hector, and D. Trinkle, Acta Mater. 58, 4332 (2010).

    Article  Google Scholar 

  22. D. Phelan, N. Stanford, B. Thijsse, and J. Sietsma, Mater. Sci. Forum 638–642, 1585 (2010).

    Article  Google Scholar 

  23. O. V. Antonova, A. Y. Volkov, D. A. Komkova, and B. D. Antonov, Mater. Sci. Eng. A 706, 319 (2017).

    Article  Google Scholar 

  24. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  25. A. Stukowski, Mod. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  ADS  Google Scholar 

  26. D. Y. Sun, M. I. Mendelev, C. A. Becker, K. Kudin, T. Haxhimali, M. Asta, J. J. Hoyt, A. Karma, and D. Srolovitz, Phys. Rev. B 73, 024116 (2006).

    Article  ADS  Google Scholar 

  27. X.-Y. Liu, J. B. Adams, F. Ercolessi, and J. A. Moriarty, Mod. Simul. Mater. Sci. Eng. 4, 293 (1996).

    Article  ADS  Google Scholar 

  28. D. E. Smirnova, S. V. Starikov, and A. M. Vlasova, Comput. Mater. Sci. 154, 295 (2018).

    Article  Google Scholar 

  29. A. Stukowski and K. Albe, Mod. Simul. Mater. Sci. Eng. 18, 085001 (2010).

    Article  ADS  Google Scholar 

  30. A. Stukowski, J. Mater. 66, 399 (2014).

    Google Scholar 

  31. A. Stukowski, V. V. Bulatov, and A. Arsenlis, Mod. Simul. Mater. Sci. Eng. 20, 085007 (2012).

    Article  ADS  Google Scholar 

  32. M. A. Lebedkin and L. R. Dunin-Barkovskii, Phys. Solid State 40, 447 (1998).

    Article  ADS  Google Scholar 

  33. V. V. Gorbatenko, V. I. Danilov, and L. B. Zuev, Tech. Phys. 62, 395 (2017).

    Article  Google Scholar 

  34. T. Nogaret, W. Curtin, J. Yasi, L. Hector, and D. Trinkle, Acta Mater. 58, 4332 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Calculations were performed using the URAN supercomputer of the Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences. A.M. Vlasova is grateful to the Shared Service Center “Supercomputer Center of the of the Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences.”

Funding

This study was performed within the State contract on the “Pressure” subject, no. АААА-А18-118020190104-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vlasova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasova, A.M. Simulation of Uniaxial Deformation of Magnesium Nanocrystals of “Rigid” and “Soft” Orientations. Phys. Solid State 62, 174–184 (2020). https://doi.org/10.1134/S1063783420010369

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010369

Keywords:

Navigation