Skip to main content
Log in

Vertical Displacement of the Magnetooptical Hysteresis Loop in the Magnetoplasmonic Nanocomposite

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract—

The results of synthesis and investigation of magnetooptical (MO) properties of thin-film magnetoplasmonic nanocomposite, which is a layer of bismuth-substituted iron garnet Bi:YIG with plasmon nanoparticles Au, have been presented. The effect of vertical displacement of the MO hysteresis loop relative to the origin has been found in the study of MO-properties in the process of reversal magnetization of this magnetoplasmonic nanocomposite. It has been shown that the observed effect is most pronounced in the vicinity of the localized plasmon resonance in the system of metal nanoparticles that are part of the magnetoplasmonic composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, IEICE Trans. Electron. 10, 1630 (2008).

    Article  Google Scholar 

  2. D. O. Ignatyeva, S. K. Sekatskii, A. N. Kalish, and V. I. Belotelov, in PIERS Proceedings, Prague, Czech Republic,2015, p. 2296.

  3. K. Uchida, H. Adachi, D. Kikuchi, S. Ito, Z. Qiu, S. Maekawa, and E. Saitoh, Nat. Commun. 6, 5910 (2015). https://doi.org/10.1038/ncomms691

    Article  ADS  Google Scholar 

  4. J. Bremer, V. Vaicikauskas, F. Hansteen, and O. Hunderi, J. Appl. Phys. 11, 6177 (2001).

    Article  ADS  Google Scholar 

  5. Y. Mizutani, H. Uchida, Y. Masuda, A. V. Baryshev, and M. Inoue, J. Magn. Soc. Jpn. 33, 481 (2009).

    Article  Google Scholar 

  6. H. Uchida, Y. Masuda, R. Fujikawa, A. V. Baryshev, and M. Inoue, J. Magn. Magn. Mater. 321, 843 (2009).

    Article  ADS  Google Scholar 

  7. S. Tkachuk, G. Lang, C. Krafft, O. Rabin, and I. Mayergoyz, J. Appl. Phys. 109, 07B717 (2011).

  8. S. V. Tomilin, V. N. Berzhansky, A. N. Shaposhnikov, A. R. Prokopov, E. T. Milyukova, A. V. Karavaynikov, and O. A. Tomilina, J. Phys.: Conf. Ser. 741, 012113 (2016).

    Google Scholar 

  9. S. V. Tomilin, V. N. Berzhansky, A. S. Yanovsky, and O. A. Tomilina, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 868 (2016).

    Article  Google Scholar 

  10. Sh. Wu, Yi. Cai, Ya. Bai, N. Liu, J. Zhu, Q. Liu, and W. Chen, in Proceedings of the Asia-Pacific Energy Equipment Engineering Research Conference AP3ER 2015 (2015), p. 162.

  11. A. Ranjgar, R. Norouzi, A. Zolanvari, and H. Sadeghi, Arm. J. Phys. 6, 198 (2013).

    Google Scholar 

  12. P. B. Catrysse and Sh. Fan, Nano Lett. 10, 2944 (2010).

    Article  ADS  Google Scholar 

  13. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  Google Scholar 

  14. J. Rodrıguez-Fernandez, J. Perez-Juste, F. J. Garcıa de Abajo, and L. M. Liz-Marzan, Langmuir 22, 7007 (2006).

    Article  Google Scholar 

  15. K. Kolwas and A. Derkachova, Opto-Electron. Rev. 4, 421 (2010).

    Google Scholar 

  16. R. Fujikawa, A. V. Baryshev, J. Kim, H. Uchida, and M. Inoue, J. Appl. Phys. 103, 07D301 (2008).

  17. A. V. Baryshev, H. Uchida, and M. Inoue, J. Opt. Soc. Am. 9, 2371 (2013).

    Article  Google Scholar 

  18. A. Axelevitch, B. Apter, and G. Golan, Opt. Express 214, 4126 (2013).

    Article  ADS  Google Scholar 

  19. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  Google Scholar 

  20. N. Engheta, D. L. Jaggard, and M. W. Kowarz, IEEE Trans. Antennas Propag. 404, 376 (1992).

    Google Scholar 

  21. A. J. Young, Ch. J. Serpell, J. M. Chin, and M. R. Reithofer, Chem. Commun. 53, 12426 (2017).

    Article  Google Scholar 

  22. J. Cheng, E. H. Hill, Y. Zheng, T. He, and Y. Liu, Mater. Chem. Front. 2, 662 (2018).

    Article  Google Scholar 

  23. A. Guerrero-Martinez, J. L. Alonso-Gomez, B. Auguie, M. M. Cid, and L. M. Liz-Marzan, Nano Today 6, 381 (2011).

    Article  Google Scholar 

  24. M. Artemyev, R. Krutokhvostov, D. Melnikau, V. Oleinikov, A. Sukhanova, and I. Nabiev, Proc. SPIE 8457, 845729 (2012). https://doi.org/10.1117/12.929860

    Article  Google Scholar 

  25. C. Noguez and I. L. Garzon, Chem. Soc. Rev. 38, 757 (2009). https://doi.org/10.1039/b800404h

    Article  Google Scholar 

Download references

Funding

The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the basic part of the state task (Project no. 3.7126.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Tomilin.

Ethics declarations

The authors state that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomilin, S.V., Berzhansky, V.N., Shaposhnikov, A.N. et al. Vertical Displacement of the Magnetooptical Hysteresis Loop in the Magnetoplasmonic Nanocomposite. Phys. Solid State 62, 144–152 (2020). https://doi.org/10.1134/S1063783420010345

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010345

Keywords:

Navigation