Skip to main content
Log in

Atmospheric Processes Involving Condensed Water

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Various mechanisms of formation and growth of water microdrops in the atmosphere include attachment of water molecules to them, coagulation and coalescence processes, and growth of drops during the rain caused by the gravitation. Condensed water cannot be formed under the conditions of standard atmosphere, it results from mixing of humid streams with cold air. Atmospheric water microdrops form the clouds, and their contribution to the atmospheric radiative flux toward the Earth is about 30%. The Mie theory for scattering of infrared radiation on liquid water droplets is represented that uses the measured optical parameters for liquid water. Then, basing on the energetic balance of the Earth and its atmosphere, it is possible to determine the relative mass of condensed water, which is of the order of 1% of the total mass of atmospheric water and is several times less than the analysis of atmospheric electricity suggests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. R. Braham, J. Meteorol. 9, 227 (1952).

    Article  Google Scholar 

  2. http://en.wikipedia.org/wiki/water-circle.

  3. http://water.usgs.gov/edu/watercyrcleatmosphere.html.

  4. A. Baumgartner and E. Reichel, The World Water Balance (Elsevier, Amsterdam, 1975).

    Google Scholar 

  5. I. A. Shiklomanov, in Water in Crisis: A Guide to the World’s Fresh Water Resources, Ed. by P. H. Gleick (Oxford Univ. Press, Oxford, 1993), p. 13.

    Google Scholar 

  6. I. A. Shiklomanov and J. C. Rodda, World Water Resources at the Beginning of the Twenty-First Century (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  7. R. W. Healy, T. C. Winter, J. W. Labaugh, and O. L. Franke, U. S. Geol. Surv. Circ., No. 1308 (Reston, VI, 2007).

  8. http://www.climate4you.com/GreenhouseGasses.htm.

  9. http://atmospheres.gsfc.nasa.gov/meso/index.php.

  10. S. E. Reynolds, M. Brook, and M. F. Gourley, J. Meteorol. 14, 426 (1957).

    Article  Google Scholar 

  11. B. M. Smirnov, Phys. Usp. 57, 1041 (2014).

    Article  ADS  Google Scholar 

  12. B. M. Smirnov, Microphysics of Atmospheric Phenomena, Springer Atmospheric Series (Springer, Switzerland, 2017).

    Book  Google Scholar 

  13. S. Twomey, Atmospheric Aerosols (Elsevier, Amsterdam, 1977).

    Google Scholar 

  14. H. G. Houghton, Physical Metereology (MIT, Cambridge, 1985).

    Google Scholar 

  15. S. Twomey, Atmos. Environ. A 25, 2435 (1991).

    Article  ADS  Google Scholar 

  16. B. M. Smirnov, Nanoclusters and Microparticles in Gases and Vapors (De Gruyter, Berlin, 2012).

    Book  Google Scholar 

  17. B. M. Smirnov, Cluster Processes in Gases and Plasmas (Wiley, Berlin, 2010).

    Book  Google Scholar 

  18. Ya. B. Zeldovich, Zh. Eksp. Teor. Fiz. 12, 525 (1942).

    Google Scholar 

  19. F. F. Abraham, Homogeneous Nucleation Theory (Academic, New York, 1974).

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Moscow, 1978; Pergamon, New York, 1980).

  21. I. Gutzow and J. Schmelzer, The Vitreous State (Springer, Berlin, 1995).

    Book  Google Scholar 

  22. W. Ostwald, Zs. Phys. Chem. 22, 289 (1897).

    Google Scholar 

  23. W. Ostwald, Zs. Phys. Chem. 34, 495 (1900).

    Google Scholar 

  24. U. S. Standard Atmosphere (U. S. Government Printing Office, Washington, 1976).

  25. https://tamino.wordpress.com/2010/08/08/urban-wet-island/.

  26. http://www.c3headlines.com/greehouse-gases-atmosphereco2methanewater-vapor.

  27. http://www.c3headlines.com/natural-negativepositive-feedback.

  28. https://en.wikipedia.org/wiki/Electromagnetic-absorption-by-water.

  29. http://www1.lsbu.ac.uk/water/water-vibrational-spectrum.html.

  30. C. M. R. Platt, Quart. J. R. Meteorol. Soc. 102, 553 (1976).

    Article  ADS  Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, Oxford, 1984).

  32. G. Mie, Ann. Phys. 330, 377 (1908).

    Article  Google Scholar 

  33. B. M. Smirnov, Clusters and Small Particles in Gases and Plasmas (Springer, New York, 1999).

    Google Scholar 

  34. H. D. Downing and D. W. Williams, J. Geophys. Res. 80, 1656 (1975).

    Article  ADS  Google Scholar 

  35. B. M. Smirnov, High Temp. 57, 573 (2019).

    Article  Google Scholar 

  36. Understanding Climate Change (Nat. Acad. Sci., Washington, 1975).

  37. V. P. Krainov and B. M. Smirnov, Atomic and Molecular Radiative Processes (Springer, Berlin, 2019).

    Book  Google Scholar 

  38. K. Ya. Kondratyev, Radiation in the Atmosphere (Academic, New York, 1969).

    Google Scholar 

  39. K. Ya. Kondratev, Radiation Processes in the Atmosphere (World Meteorol. Organization, Geneva, 1972).

    Google Scholar 

  40. K. N. Liou, An Introduction to Atmospheric Radiation (Academic, Amsterdam, 2002).

    Google Scholar 

  41. K. Ya. Kondratyev, L. S. Ivlev, V. F. Krapivin, and C. A. Varotsos, Atmospheric Aerosol Properties. Formation, Processes, and Impacts (Springer Praxis, Chichester, 2006).

    Google Scholar 

  42. M. L. Salby, Physics of the Atmosphere and Climate (Cambridge Univ. Press, Cambridge, 2012).

    Google Scholar 

  43. https://www.cfa.harvard.edu/.

  44. http://www.hitran.iao.ru/home.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Smirnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, B.M. Atmospheric Processes Involving Condensed Water. Phys. Solid State 62, 24–29 (2020). https://doi.org/10.1134/S106378342001031X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342001031X

Keywords:

Navigation