Skip to main content
Log in

Spin Fluctuations and Concentration Magnetic Transitions in Chiral Helical Ferromagnets Fe1 – xCoxSi

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The fluctuation theory is applied to the study of concentration transformations in Fe1 – xCoxSi disordered quasi-binary chiral helical ferromagnetic alloys with the Dzyaloshinsky–Moriya interaction. The ground state is described on the basis of the LDA + U + SO approximations used in ab initio calculations, with additional allowance for concentration fluctuations associated with the difference in the potentials of the intraatomic Hubbard interaction at sites occupied by iron and cobalt atoms. The solutions of the obtained magnetic equations of state for the long- and short-range ordered phases with right and left magnetic chirality are considered. The concentration dependences of the parameters of the intermodal interaction and the area of compositions, in which the first-order magnetic phase transitions induced by thermal fluctuations are accompanied by the occurrence of spin helix fluctuations, are studied. It is shown that the transition with a change in the sign of magnetic chirality is accompanied by the appearance of a minimum on the concentration dependence of the mode–mode parameter and the emergence of quantum helical ferromagnetism with noticeable intensification of zero spin fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Beille, J. Voiron, F. Towfiq, M. Roth, and Z. Y. Zhang, J. Phys. F 11, 2153 (1981).

    Article  ADS  Google Scholar 

  2. S. V. Grigoriev, V. A. Dyadkin, S. V. Maleyev, D. Menzel, J. Schoenes, D. Lamago, E. V. Moskvin, and H. Eckerlebe, Phys. Solid State 52, 907 (2010).

    Article  ADS  Google Scholar 

  3. S.-A. Siegfried, E. V. Altynbaev, N. M. Chubova, V. Dyadkin, D. Chernyshov, E. V. Moskvin, D. Menzel, A. Heinemann, A. Schreyer, and S. V. Grigoriev, Phys. Rev. B 91, 184406 (2015).

    Article  ADS  Google Scholar 

  4. M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R. Georgii, P. Boni, and C. Pfleiderer, Phys. Rev. B 87, 134407 (2013).

    Article  ADS  Google Scholar 

  5. M. P. J. Punkkinen, K. Kokko, M. Ropo, I. J. Väyrynen, L. Vitos, B. Johansson, and J. Kollar, Phys. Rev. B 73, 024426 (2006).

    Article  ADS  Google Scholar 

  6. V. V. Mazurenko, A. O. Shorikov, A. V. Lukoyanov, K. Kharlov, E. Gorelov, A. I. Lichtenstein, and V. I. Anisimov, Phys. Rev. B 81, 125131 (2010).

    Article  ADS  Google Scholar 

  7. A. A. Povzner, A. G. Volkov, and T. A. Nogovitsyna, Phys. Solid State 60, 230 (2018).

    Article  ADS  Google Scholar 

  8. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  ADS  Google Scholar 

  9. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).

    ADS  Google Scholar 

  10. J. A. Hertz and M. A. Klenin, Phys. Rev. B 10, 1084 (1974).

    Article  ADS  Google Scholar 

  11. A. A. Povzner, A. G. Volkov, and T. A. Nogovitsyna, Phys. B (Amsterdam, Neth.) 536, 408 (2018).

  12. S. V. Grigoriev, D. Chernyshov, V. A. Dyadkin, V. Dmitriev, S. V. Maleyev, E. V. Moskvin, D. Menzel, J. Schoenes, and H. Eckerlebe, Phys. Rev. Lett. 102, 037204 (2009).

    Article  ADS  Google Scholar 

  13. Y. Onose, N. Takeshita, C. Terakura, H. Takagi, and Y. Tokura, Phys. Rev. B 72, 224431 (2005).

    Article  ADS  Google Scholar 

  14. P. V. Gel’d, A. A. Povzner, and L. F. Romasheva, Sov. Phys. Dokl. 27, 639 (1982).

    ADS  Google Scholar 

  15. A. A. Povzner, A. G. Volkov, and T. M. Nuretdinov, Solid State Commun. 298, 113640 (2019).

    Article  Google Scholar 

  16. A. A. Povzner, A. G. Volkov, and T. M. Nuretdinov, Phys. Solid State 61, 500 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

The results were obtained within the framework of the assignment of the Ministry of Science and Higher Education of Russia no. FEUZ-2020-0020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Povzner.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povzner, A.A., Volkov, A.G., Nogovitsyna, T.A. et al. Spin Fluctuations and Concentration Magnetic Transitions in Chiral Helical Ferromagnets Fe1 – xCoxSi. Phys. Solid State 62, 92–99 (2020). https://doi.org/10.1134/S1063783420010266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010266

Keywords:

Navigation