Skip to main content
Log in

Propagation of Plasmons in a Graphene Bilayer in a Transverse Electric Field

  • LOW-DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dispersion relation for plasma waves in a graphene bilayer is studied. The effect of the difference of potentials between graphene layers on the dispersion line curvature for plasmons is studied in a random phase approximation. The plasmon energy and group velocity can be controlled by varying the noted potential difference. The dependence of the plasmon energy on the voltage between graphene layers is nonmonotonic. The temperature dependence of the plasmon dispersion law is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Hofmann, W.-Y. Chiang, T. D. Nguyen, and Y.‑P. Hsieh, Nanotechnology 26, 335607 (2015).

    Article  Google Scholar 

  2. X. Guo, W. Wang, H. Nan, Y. Yu, J. Jiang, W. Zhao, J. Li, Z. Zafar, N. Xiang, Zhonghua Ni, W. Hu, Y. You, and Zhenhua Ni, Optica 3, 1066 (2016).

    Article  ADS  Google Scholar 

  3. E. McCann and M. Koshino, Rep. Prog. Phys. 76, 056503 (2013).

    Article  ADS  Google Scholar 

  4. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, J. Phys.: Condens. Matter 22, 175503 (2010).

    ADS  Google Scholar 

  5. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science (Washington, DC, U. S.) 313, 951 (2006).

    Article  ADS  Google Scholar 

  6. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Phys. Rev. Lett. 102, 037403 (2009).

    Article  ADS  Google Scholar 

  7. K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 102, 256405 (2009).

    Article  ADS  Google Scholar 

  8. L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. H. Castro Neto, and M. A. Pimenta, Phys. Rev. B 76, 201401(R) (2007).

  9. A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov, Phys. Usp. 54, 227 (2011).

    Article  ADS  Google Scholar 

  10. P. V. Badikova and S. Yu. Glazov, Bull. Russ. Acad. Sci.: Phys. 81, 51 (2017).

    Article  Google Scholar 

  11. A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, Science (Washington, DC, U. S.) 328, 999 (2010).

    Article  ADS  Google Scholar 

  12. P. K. Pyatkovskiy and T. Chakraborty, Phys. Rev. B 93, 085145 (2016).

    Article  ADS  Google Scholar 

  13. Y. E. Lozovik and A. A. Sokolik, Nanoscale Res. Lett. 7, 134 (2012).

    Article  ADS  Google Scholar 

  14. A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nat. Photon. 6, 749 (2012).

    Article  ADS  Google Scholar 

  15. F. Peragut, L. Cerutti, A. Baranov, J. P. Hugonin, T. Taliercio, Y. de Wilde, and J. J. Greet, Optica 4, 1409 (2017).

    Article  ADS  Google Scholar 

  16. N. M. Hassan, V. V. Mkhitaryan, and E. G. Mishchenko, Phys. Rev. B 85, 125411 (2012).

    Article  ADS  Google Scholar 

  17. G. Borghi, M. Polini, R. Asgari, and A. H. MacDonald, Phys. Rev. B 80, 241402(R) (2009).

  18. R. Sensarma, E. H. Hwang, and S. Das Sarma, Phys. Rev. B 82, 195428 (2010).

    Article  ADS  Google Scholar 

  19. S. Das Sarma and Q. Li, Phys. Rev. B 87, 235418 (2013).

    Article  ADS  Google Scholar 

  20. T. Low, F. Guinea, H. Yan, F. Xia, and P. Avouris, Phys. Rev. Lett. 112, 116801 (2014).

    Article  ADS  Google Scholar 

  21. P. M. Krstajic and F. M. Peeters, Phys. Rev. B 88, 165420 (2013).

    Article  ADS  Google Scholar 

  22. S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 102, 206412 (2009).

    Article  ADS  Google Scholar 

  23. A. V. Rozhkov, A. O. Sboychakov, A. L. Rakhmanov, and F. Nori, Phys. Rep. 648, 1 (2009).

    Article  ADS  Google Scholar 

  24. M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 82, 235408 (2010).

    Article  ADS  Google Scholar 

  25. M. Killi, S. Wu, and A. Paramekanti, Phys. Rev. Lett. 107, 086801 (2011).

    Article  ADS  Google Scholar 

  26. F. Sattari and E. Faizabadi, Int. J. Mod. Phys. B 27, 1350024 (2013).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation in the project part of state task, project no. 3.2797.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Kukhar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukhar, E.I., Kryuchkov, S.V. Propagation of Plasmons in a Graphene Bilayer in a Transverse Electric Field. Phys. Solid State 62, 196–199 (2020). https://doi.org/10.1134/S1063783420010199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010199

Keywords:

Navigation