Skip to main content
Log in

Effect of the Landau Levels on the Super Hyperfine Structure of ESR Spectra of Fe3+ Precipitates in Dirac 3D Semimetal Cd3As2

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of d-metal impurities on the magnetic and transport properties of 3D topological semimetal Cd3As2 has been experimentally studied. It is found that alloying with iron does not change the sign of magnetoresistance (in contrast to Eu). Amplification of oscillations of the parameters (magnetic susceptibility, contact potential difference, and conductivity) related to oscillations of the density of states at the Fermi level is observed with a change in temperature and magnetic field. ESR signals from Fe2+ ions (which are most likely the main type of Fe impurity in Cd3As2) have not been detected in the temperature range of 10–300 K. Weak ESR signals with a super hyperfine structure, which is obviously affected by the Landau levels, have been observed from Fe3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yu. V. Goryunov and A. N. Nateprov, Phys. Solid State 60, 68 (2018).

    Article  ADS  Google Scholar 

  2. S. M. Young, S. Zaheer, J. C. Y. Theo, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 108, 140405 (2012).

    Article  ADS  Google Scholar 

  3. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Phys. Rev. Lett. 113, 027603 (2014).

    Article  ADS  Google Scholar 

  4. M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 027201 (2013).

    Article  ADS  Google Scholar 

  5. P. W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).

    Article  ADS  Google Scholar 

  7. N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679 (1955).

    Article  ADS  Google Scholar 

  8. B. I. Kochelaev, L. R. Tagirov, and M. G. Khusainov, Sov. Phys. JETP 49, 291 (1979).

    ADS  Google Scholar 

  9. G. G. Khaliullin and B. I. Kochelaev, Phys. Lett. A 106, 318 (1984).

    Article  ADS  Google Scholar 

  10. I. Ya. Korenblit and E. F. Shender, Sov. Phys. Usp. 21, 832 (1978).

    Article  ADS  Google Scholar 

  11. T. S. Altshuler, Yu. V. Goryunov, and M. S. Bresler, Phys. Rev. 73, 235210 (2006).

    Article  Google Scholar 

  12. H.-R. Chang, J. Zhou, S.-X. Wang, W.-Y. Shan, and D. Xiao, Phys. Rev. B 92, 241103(R) (2015).

  13. J.-H. Sun, D.-H. Xu, F.-C. Zhang, and Y. Zhou, Phys. Rev. B 92, 195124 (2015).

    Article  ADS  Google Scholar 

  14. E. Kogan, Graphene 2, 8 (2013).

    Article  Google Scholar 

  15. L. K. Aminov, I. N. Kurkin, and B. Z. Malkin, Phys. Solid State 55, 1343 (2013).

    Article  ADS  Google Scholar 

  16. G. K. Wertheim, Mössbauer Effect, Principles and Applications (Academic, New York, 1964), Chap. 7.

    MATH  Google Scholar 

  17. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970), Chap. 17.

    Google Scholar 

  18. T. S. Al’tshuler, M. S. Bresler, Yu. V. Goryunov, F. Iga, and T. Takabatake, Phys. Solid State 44, 1536 (2002).

    Article  ADS  Google Scholar 

  19. A. Abragam, Phys. Rev. 79, 534 (1950).

    Article  ADS  Google Scholar 

  20. A. M. Leushin, Sov. Phys. Solid State 5, 2477 (1963).

    Google Scholar 

  21. B. G. Wybourne, Phys. Rev. 148, 317 (1966).

    Article  ADS  Google Scholar 

  22. G. Michels, M. Roepke, T. Niemöller, M. Chefki, M. M. Abd-Elmeguid, H. Micklitz, E. Holland-Moritz, W. Schlabitz, C. Huhnt, and B. Büchner, J. Phys.: Condens. Matter 8, 4055 (1996).

    ADS  Google Scholar 

  23. V. Kataev, G. Khaliullin, G. Michels, C. Huhnt, E. Holland-Moritz, W. Schlabitz, and A. Mewis, J. Magn. Magn. Mater. 137, 157 (1994).

    Article  ADS  Google Scholar 

  24. G. N. Neilo, O. T. Antonyak, and A. D. Prokhorov, Phys. Solid State 43, 652 (2001).

    Article  ADS  Google Scholar 

  25. K. S. Nemkovski, D. P. Kozlenko, P. A. Alekseev, J.‑M. Mignot, A. P. Menushenkov, A. A. Yaroslavtsev, E. S. Clementyev, A. S. Ivanov, S. Rols, B. Klobes, R. P. Hermann, and A. V. Gribanov, Phys. Rev. B 94, 195101 (2016).

    Article  ADS  Google Scholar 

  26. E. G. Batyev, Phys. Usp. 52, 1245 (2009).

    Article  ADS  Google Scholar 

  27. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1971).

Download references

ACKNOWLEDGMENTS

We are grateful to V. Fritsch (Universität Augsburg) for help in determining the lattice constants of the doped samples.

Funding

This study was performed within state contracts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Goryunov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goryunov, Y.V., Nateprov, A.N. Effect of the Landau Levels on the Super Hyperfine Structure of ESR Spectra of Fe3+ Precipitates in Dirac 3D Semimetal Cd3As2. Phys. Solid State 62, 100–105 (2020). https://doi.org/10.1134/S1063783420010114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010114

Keywords:

Navigation