Skip to main content
Log in

Modeling the Stretch Behavior of the Single-Crystal Ni–Al Alloy and Its Molecular Dynamics Simulation

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation was employed in this study to investigate the atomistic mechanisms involved in the Ni–Al alloy homogeneous deformation and the mechanical properties of single-crystal Ni–Al under periodic boundary conditions (until the fracture begins). It is the objective of the present study to develop a simple mathematical model for calculating stress similar to molecular dynamics simulation while the effects of the components of the interatomic potential energy function and the different neighboring atomic shells are also determined on the total stress in the system. The model results show that the sixth nearest neighboring shell has the greatest effect on the stress-strain curve of the Ni–Al single crystal. The associated calculations in the model also show that, in the absence of the pair interaction type of the sixth nearest neighboring shell, the behavior of the material approaches a linear elastic one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. Miracle, Acta Metall. Mater. 41, 649 (1993).

    Article  Google Scholar 

  2. H.-C. Cheng, C.-F. Yu, and W.-H. Chen, J. Mater. Sci. 47, 3103 (2012).

    Article  ADS  Google Scholar 

  3. C. Qiao, Y. Guo, Z. Wang, Y. Zheng, R. Zhang, L. Chen, Y.-L. Chen, W.-S. Su, Y. Jia, and S. Wang, J. Mater. Sci. 52, 13237 (2017).

    Article  ADS  Google Scholar 

  4. V. K. Sutrakar and D. R. Mahapatra, Intermetallics 18, 1565 (2010).

    Article  Google Scholar 

  5. N. Yuri and K. Andrey, Int. J. Mater. Sci. Appl. 2, 228 (2013).

    Google Scholar 

  6. P. Dang and M. Grujicic, J. Mater. Sci. 32, 4875 (1997).

    Article  ADS  Google Scholar 

  7. R. Machado, M. Sepliarsky, and M. Stachiotti, J. Mater. Sci. 45, 4912 (2010).

    Article  ADS  Google Scholar 

  8. G. Purja Pun and Y. Mishin, Philos. Mag. 89, 3245 (2009).

    Article  ADS  Google Scholar 

  9. G. P. Pun and Y. Mishin, J. Phys: Condens. Matter 22, 395403 (2010).

    Google Scholar 

  10. R. Babicheva, K. Bukreeva, S. Dmitriev, R. Mulyukov, and K. Zhou, Comput. Methods Sci. Technol. 19, 127 (2013).

    Article  Google Scholar 

  11. R. I. Babicheva, K. A. Bukreeva, S. V. Dmitriev, and K. Zhou, Comput. Mater. Sci. 79, 52 (2013).

    Article  Google Scholar 

  12. K. Bukreeva, R. Babicheva, S. Dmitriev, K. Zhou, R. Mulyukov, and A. Potekaev, Russ. Phys. J. 57, 69 (2014).

    Article  Google Scholar 

  13. K. Bukreeva, R. Babicheva, S. V. Dmitriev, K. Zhou, and R. R. Mulyukov, JETP Lett. 98, 91 (2013).

    Article  ADS  Google Scholar 

  14. K. Bukreeva, R. Babicheva, A. Sultanguzhina, S. Dmitriev, K. Zhou, and R. Mulyukov, Phys. Solid State 56, 1157 (2014).

    Article  ADS  Google Scholar 

  15. R. I. Babicheva, K. A. Bukreeva, S. V. Dmitriev, R. R. Mulyukov, and K. Zhou, Intermetallics 43, 171 (2013).

    Article  Google Scholar 

  16. K. Bukreeva, R. Babicheva, S. Dmitriev, K. Zhou, and R. Mulyukov, Phys. Solid State 55, 1963 (2013).

    Article  ADS  Google Scholar 

  17. V. K. Sutrakar and D. R. Mahapatra, Nanotechnology 20, 295705 (2009).

    Article  Google Scholar 

  18. V. K. Sutrakar and D. R. Mahapatra, Intermetallics 18, 679 (2010).

    Article  Google Scholar 

  19. V. K. Sutrakar and D. R. Mahapatra, Mater. Lett. 15, 1289 (2009).

    Article  Google Scholar 

  20. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  21. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Article  ADS  Google Scholar 

  22. https://www.ctcms.nist.gov/potentials/testing/system/Al-Ni/.

  23. Y. Mishin, in Handbook of Materials Modeling, Ed. by S. Yip (Springer, Netherlands, 2005), p. 459.

    Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Alizadeh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javad Alizadeh, Panjepour, M. & Ahmadian, M. Modeling the Stretch Behavior of the Single-Crystal Ni–Al Alloy and Its Molecular Dynamics Simulation. Phys. Solid State 62, 83–91 (2020). https://doi.org/10.1134/S1063783420010047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010047

Keywords:

Navigation