Skip to main content
Log in

Dislocation Reactions in a Semipolar Gallium Nitride Layer Grown on a Vicinal Si(001) Substrate Using Aluminum Nitride and 3C–SiC Buffer Layers

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Transmission electron microscopy was used to study the interaction of a + c and a dislocations in a thick (14 μm) semipolar GaN layer grown by hydride vapor phase epitaxy on a 3C-SiC/Si(001) template. It is shown that the propagation of a dislocation half-loop with a Burgers vector b = \(\frac{1}{3}\left\langle {1\bar {2}10} \right\rangle \) during cooling can be blocked due to its reaction with a threading dislocation with a Burgers vector b = \(\frac{1}{3}\left\langle {\bar {1}2\bar {1}3} \right\rangle \) with the formation of a dislocation segment with a Burgers vector b = 〈0001〉. The gain in energy of the system as a result of such reaction is theoretically estimated. Within the approximation of dislocation linear tension, this gain is ~7.6 eV/Å, which gives ~45.6 keV for new dislocation segment with a length of ~600 nm. The contribution of the energy of the dislocation core is estimated as ~19.1 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Appl. Phys. Lett. 67, 1868 (1995).

    Article  ADS  Google Scholar 

  2. A. Kinoshita, H. Hirayama, M. Ainoya, Y. Aoyagi, and A. Hirata, Appl. Phys. Lett. 77, 175 (2000).

    Article  ADS  Google Scholar 

  3. S. Nakamura, M. Senoh, Sh. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L217 (1996).

    Article  Google Scholar 

  4. D. Cherns, S. J. Henley, and F. A. Ponce, Appl. Phys. Lett. 78, 2691 (2001).

    Article  ADS  Google Scholar 

  5. Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 94, 111109 (2009).

    Article  ADS  Google Scholar 

  6. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 91, 231114 (2007).

    Article  ADS  Google Scholar 

  7. T. Deguchi, K. Sekiguchi, A. Nakamura, T. Sota, R. Matsuo, Sh. Chichibu, and Sh. Nakamura, Jpn. J. Appl. Phys. 38, L914 (1999).

    Article  ADS  Google Scholar 

  8. S. P. Denbaars, D. Feezell, K. Kelchner, S. Pimputkar, Ch.-Ch. Pan, Ch.-Ch. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and Sh. Nakamura, Acta Mater. 61, 945 (2013).

    Article  Google Scholar 

  9. A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck, J. Appl. Phys. 100, 023522 (2006).

    Article  ADS  Google Scholar 

  10. M. T. Hardy, P. Sh. Hsu, F. Wu, I. L. Koslow, E. C. Young, Sh. Nakamura, A. E. Romanov, S. P. Den Baars, and J. S. Speck, Appl. Phys. Lett. 100, 202103 (2012).

    Article  ADS  Google Scholar 

  11. E. C. Young, C. S. Gallinat, A. E. Romanov, A. Tyagi, F. Wu, and J. S. Speck, Appl. Phys. Express 3, 111002 (2010).

    Article  ADS  Google Scholar 

  12. V. N. Bessolov, E. V. Konenkova, S. A. Kukushkin, A. V. Myasoedov, A. V. Osipov, S. N. Rodin, M. P. Shcheglov, and N. A. Feoktistov, Tech. Phys. Lett. 40, 386 (2014).

    Article  ADS  Google Scholar 

  13. S. A. Kukushkin and A. V. Osipov, J. Phys. D 47, 313001 (2014).

    Article  ADS  Google Scholar 

  14. S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, J. Cryst. Growth 231, 371 (2001).

    Article  ADS  Google Scholar 

  15. P. B. Hirsch, Electron Microscopy of Thin Crystals (Krieger, Toledo, OH, 1977).

    Google Scholar 

  16. J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1982).

    MATH  Google Scholar 

  17. R. Gröger, L. Leconte, and A. Ostapovets, Comput. Mater. Sci. 99, 195 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

TEM studies were carried out using the equipment of the Federal State-Funded Scientific Center “Materials Science and Diagnostics in Advanced Technologies,” supported by the Ministry of Education and Science of the Russian Federation (unique project identifier RFMEFI62117X0018).

Funding

M.Yu. Gutkin is grateful to the Ministry of Education and Science of the Russian Federation for supporting the theoretical part of the work (project no. 3.3194.2017/4.6). A.V. Myasoedov is grateful to the Council on Grants of the President of the Russian Federation for support (project no. SP-3391.2019.1). The studies of S.A. Kukushkin, who has synthesized the samples of SiC layers on Si(001), are supported by the Russian Science Foundation (project no. 19-72-30004).

The study was supported by the Ministry of Higher Education and Science of the Russian Federation as part of the work on the state assignment of the Ioffe Institute in terms of characterization of objects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Sorokin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, L.M., Gutkin, M.Y., Myasoedov, A.V. et al. Dislocation Reactions in a Semipolar Gallium Nitride Layer Grown on a Vicinal Si(001) Substrate Using Aluminum Nitride and 3C–SiC Buffer Layers. Phys. Solid State 61, 2316–2320 (2019). https://doi.org/10.1134/S1063783419120527

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419120527

Keywords:

Navigation