Skip to main content
Log in

Degenerate Structure of Transformation Twins and Estimation of Dislocation Density in Martensite Crystals

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In the dynamic theory of martensitic transformations, the wave mechanism of controlling martensite crystal growth is determined by the superposition of wave beams of quasi-longitudinal (or longitudinal) waves carrying the “tensile–compression” deformation in the orthogonal directions. The wave beam formation is considered to be a result of the formation of excited (vibrational) states. The existence of transformation twins is interpreted as a result of a matched propagation with respect to long-wave (l waves) and short-wave (s waves) shifts. The matching condition is analyzed for the γ–α martensitic transformation in iron-base alloys. It is shown for the first time that the transition to a degenerate twin structure with the allowance for the medium discreteness enables one to estimate the dislocation density in crystals with habit {557}, which agrees with that observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. V. Kurdyumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  2. M. P. Kashchenko, The Wave Model of Martensite Growth in the Case of γα Transformations in Iron-Based Alloys, 2nd ed. (Regul. Khaotich. Dinam., Moscow, Izhevsk, 2010) [in Russian].

    Google Scholar 

  3. M. P. Kashchenko and V. G. Chashchina, A Dynamic Model of the Formation of Twin Martensitic Crystals at γα Transformations in Iron-Based Alloys (Ural. Gos. Lesotekh. Univ., Yekaterinburg, 2009) [in Russian].

    Google Scholar 

  4. M. P. Kashchenko and V. G. Chashchina, Phys. Usp. 54, 331 (2011).

    Article  ADS  Google Scholar 

  5. H. Warlimont and L. Delay, Martersitic Transformations in Copper-, Silver- and Gold-Based Alloys (Pergamon, Oxford, 1974).

    Google Scholar 

  6. M. A. Shtremel’, The Strength of Alloys. Part. 2: Deformation (MISIS, Moscow, 1997) [in Russian].

    Google Scholar 

  7. M. P. Kashchenko, V. G. Chashchina, and S. V. Vi-kharev, Phys. Met. Metallogr. 110, 200 (2010).

    Article  ADS  Google Scholar 

  8. M. P. Kashchenko, V. G. Chashchina, and S. V. Vi-kharev, Phys. Met. Metallogr. 110, 305 (2010).

    Article  ADS  Google Scholar 

  9. M. P. Kashchenko and V. G. Chashchina, Phys. Met. Metallogr. 114, 821 (2013).

    Article  ADS  Google Scholar 

  10. M. P. Kashchenko, I. F. Latypov, and V. G. Chashchina, Lett. Mater. 7, 146 (2017).

    Article  Google Scholar 

  11. M. P. Kashchenko and V. G. Chashchina, Phys. Met. Metallogr. 118, 311 (2017).

    Article  ADS  Google Scholar 

  12. M. P. Kashchenko, N. M. Kashchenko, and V. G. Cha-shchina, Mater. Today 4, 4605 (2017).

    Google Scholar 

  13. M. P. Kashchenko, N. M. Kashchenko, and V. G. Cha-shchina, Phys. Met. Metallogr. 119, 1 (2018).

    Article  ADS  Google Scholar 

  14. M. P. Kashchenko, N. M. Kashchenko, and V. G. Cha-shchina, Lett. Mater. 8, 429 (2018).

    Article  Google Scholar 

  15. F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  16. G. Haush and H. Warlimont, Acta Met. 21, 400 (1973).

    Google Scholar 

  17. E. D. Hallman and B. N. Brockhouse, Can. J. Phys. 47, 1117 (1969).

    Article  ADS  Google Scholar 

  18. T. V. Eterashvili, L. M. Utevskii, and M. N. Spasskii, Fiz. Met. Metalloved. 49, 807 (1979).

    Google Scholar 

  19. D. P. Rodionov and V. M. Schastlivtsev, Steel Single Crystals (UrO RAN, Yekaterinburg, 1996) [in Russian].

    Google Scholar 

  20. V. P. Vereshchagin, M. P. Kashchenko, S. V. Konovalov, and T. N. Yablonskaya, Fiz. Met. Metalloved. 77, 173 (1994).

    Google Scholar 

  21. M. P. Kashchenko, V. V. Letuchev, S. V. Konovalov, and T. N. Yablonskaya, Phys. Met. Metallogr. 83, 237 (1997).

    Google Scholar 

  22. V. G. Chashchina, Russ. Phys. J. 52, 766 (2009).

    Article  Google Scholar 

  23. M. P. Kashchenko, N. A. Skorikova, and V. G. Cha-shchina, Phys. Met. Metallogr. 106, 219 (2008).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to participants of the XXI Winter School on the Mechanics of Continua (Perm, Febru-ary   18–22, 2019) and the International Conference MGCTF-2019 (St. Petersburg, July 1–5, 2019) for discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Kashchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashchenko, M.P., Kashchenko, N.M. & Chashchina, V.G. Degenerate Structure of Transformation Twins and Estimation of Dislocation Density in Martensite Crystals. Phys. Solid State 61, 2254–2259 (2019). https://doi.org/10.1134/S1063783419120187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419120187

Keywords:

Navigation