Skip to main content
Log in

Ion-Beam and X-Ray Methods of Elemental Diagnostics of Thin Film Coatings

  • SURFACE PHYSICS AND THIN FILMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We show how the combined use of the methods of Rutherford backscattering of ions and X-ray fluorescence analysis under conditions of total external reflection of the flow of exciting hard X-ray radiation and registration of the X-ray radiation output during ion excitation allows to effectively diagnose the elemental composition of thin-film coatings and films of dry residues of liquids. These methods and the features of their experimental application are briefly described. Examples of the complex methodological analysis of real objects are given. The possibility of increasing the efficiency of the methods of X-ray fluorescence analysis of materials due to the inclusion in the X-ray optical schemes of experimental measurements of flat X-ray waveguide resonators is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. R. Bird and J. S. Williams, Ion Beams for Material Analysis (Academic, Sydney, 1989).

    Google Scholar 

  2. S. A. E. Johanson, J. L. Campbell, and K. G. Molquist, Particle Induced X-Ray Emission Spectrometry (PIXE) (Wiley, New York, 1995).

    Google Scholar 

  3. R. Klockenkamper and A. von Bohlen, Total Reflection X-Ray Fluorescence Analysis and Related Methods, 2nd ed. (Wiley, New York, 2015).

    Google Scholar 

  4. N. F. Losev, Quantitative X-Ray Fluorescence Analysis (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  5. Quantitative Electron-Probe Microanalysis, Ed. by V. D. Scott and G. Love (Wiley, New York, 1983).

    Google Scholar 

  6. E. P. Bertin, Principles and Practice of X-Ray Spectrometric Analysis, 2nd ed. (Plenum, New York, 1975).

    Book  Google Scholar 

  7. R. Jenkins, R. W. Gould, and D. Gedcke, Quantitative X-Ray Spectrometry (Dekker, New York, 1995).

    Google Scholar 

  8. Y. Yoneda and T. Horiuchi, Rev. Sci. Instrum. 42, 1069 (1971).

    Article  ADS  Google Scholar 

  9. V. K. Egorov and E. V. Egorov, X-ray Spectrom. 33, 360 (2004).

    Article  ADS  Google Scholar 

  10. V. K. Egorov, E. V. Egorov, and E. M. Luk’yanchenko, Nanoinzheneriya 5, 7 (2015).

    Google Scholar 

  11. V. K. Egorov, E. V. Egorov, and E. M. Loukianchenko, Asp. Min. Min. Sci. 2, 1 (2018).

    Google Scholar 

  12. H. Stosnach and A. Gross, Lab. Report XRF 458 (Bruker AXS Inc., Berlin, 2015).

    Google Scholar 

  13. https://www.amptek.com/products/sdd-x-ray-detectors-for-xrfeds/x-123sdd-complete-x-ray-spectrometer-with-silicon-driftdetector-sdd.

  14. M. Nastasi, J. W. Mayer, and Y. Wang, Ion Beam Analysis, Fundaments and Application (CRC, Boca Raton, FL, 2015).

    Google Scholar 

  15. L. R. Doolittle, Nucl. Instrum. Methods Phys. Res. 9, 344 (1985).

    Article  ADS  Google Scholar 

  16. E. Rauhala, Nucl. Instrum. Methods Phys. Res. 12, 447 (1985).

    Article  ADS  Google Scholar 

  17. X-ray Spectrometry: Recent Technological Advanced, Ed. by K. Tsuji and R. van Grieken (Wiley, Chichester, 2004).

    Google Scholar 

  18. T. A. Cahill, Ann. Rev. Nucl. Part. Sci. 30, 211 (1980).

    Article  ADS  Google Scholar 

  19. Ion Beam for Material Analysis: Conventional and Advanced Approaches, Ed. by I. Ahmad and M. Maaza (Intechopen, London, 2018), p. 38.

    Google Scholar 

  20. V. K. Egorov, E. V. Egorov, and M. S. Afanas’ev, J. Phys.: Conf. Ser. 1121, 1 (2018).

    Google Scholar 

  21. H. Hofsas, Forward Recoil Spectroscopy (Plenum, New York, 1996).

    Google Scholar 

  22. Handbook on Modern Ion Beam Material Analysis, 2nd ed., Ed. by Y. Wang and M. Nastasi (Mater. Res. Soc., Warrendale, 2009).

    Google Scholar 

  23. Ion Implantation, Ed. by M. Goorsky (Intech, Rijeka, 2012).

    Google Scholar 

  24. P. L. Clay, E. B. Baxter, and D. I. Cherniak, Geochim. Cosmochim, Acta 74, 5906 (2010).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the RAS academician Yu.V. Gulyaev for his interest in our work.

Funding

The work was performed as part of the State assignment no. 075-00475-19-00 and was partially supported by the Russian Foundation for Basic Research, project nos. 19-07-00271 and 18-029-11029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Egorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, V.K., Egorov, E.V. & Afanas’ev, M.S. Ion-Beam and X-Ray Methods of Elemental Diagnostics of Thin Film Coatings. Phys. Solid State 61, 2480–2486 (2019). https://doi.org/10.1134/S1063783419120114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419120114

Keywords:

Navigation