Skip to main content
Log in

The Origin of Phase Transition and the Usual Evolutions of the Unit-Cell Constants of the NASICON Structures of the Solid Solution LiTi2 – xGex(PO4)3

  • PHASE TRANSITIONS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Ge-doped LiTi2(PO4)3 has been synthesized by a conventional solid-state reaction. Compounds LiM\(_{2}^{{{\text{IV}}}}\)(PO4)3 with LTP-type structure present a different behaviour depending on nature of M(IV). For M(IV) = Ti and Ge, the structure shows the space group R3c, whereas for M(IV) = Ge the space group is R3. Differences in behaviour of LiTi2(PO4)3–LiGe2(PO4)3 solid solutions are discussed in relation to the composition. Their structures LiTi2 – xGex(PO4)3 (0 ≤ x < 2) were determined from X-ray powder diffraction method (XRD) using Rietveld analysis. A sharp change in the lattice parameter a is observed between the compositions with x = 1. The lattice parameter c increases as the Ge content increases in the whole range of composition. The space group R3c becomes R3 for the composition with x > 1. The SEM micrographs of the samples show relative porous microstructures due to the effect of the substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Z. Lin-Shao, P. Chen, Z. Hu, and C. Chen, Chin. J. Chem. Phys. 25, 703 (2012).

    Article  Google Scholar 

  2. K. Dokko, K. Hoshina, H. Nakano, and K. Kanamura, J. Power Sources 174, 1100 (2007).

    Article  ADS  Google Scholar 

  3. M. Monchak, T. Hupfer, A. Senyshyn, H. Boysen, D. Chernyshov, T. Hansen, K. G. Schell, E. C. Bucharsky, M. J. Hoffmann, and H. Ehrenberg, Inorg. Chem. 55, 2941 (2016).

    Article  Google Scholar 

  4. H. El-Shinawi and J. Janek, RSC Adv. 5, 14887 (2015).

    Article  Google Scholar 

  5. M. Kotobuki, Y. Isshiki, H. Munakata, and K. Kanamura, Electrochim. Acta 55, 6892 (2010).

    Article  Google Scholar 

  6. X. Xu, Z. Wen, J. Wu, and X. Yang, Solid State Ionics 178, 29 (2007).

    Article  Google Scholar 

  7. Y. X. Gao, X. P. Wang, W. G. Wang, and Q. F. Fang, Solid State Ionics 181, 33 (2010).

    Article  Google Scholar 

  8. A. Navulla, Solid State Ionics 181, 659 (2010).

    Article  Google Scholar 

  9. Y. J. Wang, Y. Pan, and D. Kim, J. Power Sources 159, 690 (2006).

    Article  ADS  Google Scholar 

  10. K. Arbi, A. Kuhn, J. Sanz, and F. Garcia-Alvarado, J. Electrochem. Soc. 157, 654 (2010).

    Article  Google Scholar 

  11. H. Rusdi, A. Abd Rahman, R. H. Y. Subban, and N. S. Mohamed, Adv. Mater. Res. 545, 194 (2012).

    Google Scholar 

  12. M. Pérez-Estébanez, J. Isasi-Marin, A. Rivera-Calzada, C. León, and M. Nygren, J. Alloys. Compd. 651, 642 (2015).

    Article  Google Scholar 

  13. R. Alias, Mater. Sci.: Sintering Appl. 23, 118 (2013).

    MathSciNet  Google Scholar 

  14. P. Yadav and M. C. Bhatnagar, Ceram. Int.l 38, 1731 (2012).

    Article  Google Scholar 

  15. L. Hagman and P. Kierkegaard, Acta Chem. Scand. 22, 1822 (1968).

    Article  Google Scholar 

  16. Y. Kim and J. B. Goodenough, Electrochem. Commun. 10, 497 (2008).

    Article  Google Scholar 

  17. A. Leclaire, M.-M. Borel, A. Grandin, and B. Raveau, Acta Crystallogr. 45, 699 (1989).

    Article  Google Scholar 

  18. J. P. Boilot, G. Collin, and Ph. Colomban, Mater. Res. Bull. 22, 669 (1987).

    Article  Google Scholar 

  19. C. Verissimo, F. M. S. Garrido, O. L. Alves, P. Calle, A. Martinez-Juárez, J. E. Iglesias, and J. M. Rojo, Solid State Ionics 100, 127 (1997).

    Article  Google Scholar 

  20. M. Barré, M. P. Crosnier-Lopez, F. Le Berre, E. Suard, and J. L. Fourquet, J. Solid State Chem. 180, 1011 (2007).

    Article  ADS  Google Scholar 

  21. D. Tran Qui, J. J. Capponi, J. C. Joubert, and R. D. Shannon, J. Solid State Chem. 39, 219 (1981).

    Article  ADS  Google Scholar 

  22. M. P. Carrasco, M. C. Guillem, and J. Alamo, Solid State Ionics 63, 684 (1993).

    Article  Google Scholar 

  23. C. J. Howard, B. A. Hunter, and D. A. J. Swinkels, Rietica IUCR Powder Diffr. 22, 21 (1997).

    Google Scholar 

  24. G. X. Wang, D. H. Bradhurst, S. X. Dou, and H. K. Liu, J. Power Sources 124, 231 (2003).

    Article  ADS  Google Scholar 

  25. M. A. Paris and J. Sanz, Phys. Rev. B 55, 14270 (1997).

    Article  ADS  Google Scholar 

  26. C. Delmas, J. C. Viala, R. Olazcuaga, G. Le Flem, P. Hagenmuller, F. Cherkaoui, and R. Brochu, Mater. Res. Bull. 16, 83 (1981).

    Article  Google Scholar 

  27. J. Alamo, Solid State Ionics 63, 547 (1993).

    Article  Google Scholar 

  28. A. Aatiq, C. Delmas, and A. El Jazouli, J. Solid State Chem. 158, 169 (2001).

    Article  ADS  Google Scholar 

  29. A. Aatiq, M. Ménétrier, A. El Jazouli, and C. Delmas, Solid State Ionics 150, 391 (2002).

    Article  Google Scholar 

  30. J. Wolfenstine, J. L. Allen, J. Sumner, and J. Sakamoto, Solid State Ionics 180, 961 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nedjemeddine Bounar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedjemeddine Bounar The Origin of Phase Transition and the Usual Evolutions of the Unit-Cell Constants of the NASICON Structures of the Solid Solution LiTi2 – xGex(PO4)3. Phys. Solid State 61, 2446–2450 (2019). https://doi.org/10.1134/S1063783419120072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419120072

Keywords:

Navigation