Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 2194–2199 | Cite as

Band Gap Modulation by Two-Dimensional h-BN Nanostructure

  • Ahmad Razmdideh
  • Mohamad Taghi AhmadiEmail author
LOW-DIMENSIONAL SYSTEMS
  • 43 Downloads

Abstract

Two-dimensional hexagonal boron nitride (h-BN) as a graphene-like material was investigated due to its impending applications in electronics. The h-BN band gap Eg as an important factor and its variation between bilayer ZrSe2 sheets were explored under an external electric field. The initially indirect band gap is found to convert to direct band gap by means of density functional theory. Additionally, the band gap is modulated by van der Waals corrections from 0.21220 to 0.01770 eV. Based on the results, the proposed heterostructure is converted to the direct band gap, and band gap smoothly decreased from 0.25440 to 0.0436 eV following the application of external electric field from 0.2 to 0.6 eV. Moreover, ZrSe2|h-BN|ZrSe2 is investigated under the applied biaxial compressive strain from 1 to 4%. The findings demonstrated that the gap was decreased by any compressive strain amplification, while the semiconducting behavior in the heterostructure attained to the semi-metallic performance under the increasing strain.

Keywords:

band gap modulation h-BN nanostructure zirconium diselenide 

Notes

CONFLICT OF INTERESTS

The authors declare that they have no conflicts of interests.

REFERENCES

  1. 1.
    T. T. Vu and V. T. Tran, Semicond. Sci. Technol. 31 (8), 8 (2016).CrossRefGoogle Scholar
  2. 2.
    M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 13 (2013).CrossRefGoogle Scholar
  3. 3.
    M. Xu, L. Han, and S. Dong, ACS Appl. Mater. Interfaces 5, 8 (2013).Google Scholar
  4. 4.
    S. Mañas-Valero, V. García-López, A. Cantarero, and M. Galbiati, Appl. Sci. 6 (9), 19 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Laturia, M. L. van de Put, and W. G. Vandenberghe, NPJ 2D Mater. Appl. 2, 7 (2018).Google Scholar
  6. 6.
    C. Z. N. Peidong Yang, L. Dou, and P. Yang, Nat. Rev. Mater. 2, 14 (2017).Google Scholar
  7. 7.
    S. Y. F. Zhao, G. A. Elbazet, D. K. Bediako, C. Yu, D. K. Efetov, Y. Guo, J. Ravichandran, K.-A. Min, S. Hong, T. Taniguchi, K. Watanabe, L. E. Brus, X. Roy, and P. Kim, Nano Lett. 18, 7 (2017).Google Scholar
  8. 8.
    J. N. Coleman, M. Lotya, A. O’Neil, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.‑Y. Kim, K. Lee, et al., Science (Washington, DC, U. S.) 331 (6017), 56 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Hejna, E. B. Radojewska, H. Szymanski, and M. Wdcyrz, Scanning 8 (4), 5 (1986).CrossRefGoogle Scholar
  10. 10.
    Z. Zhang, S. Hu, J. Chen, and B. Li, Nanotechnol. 28 (22), 10 (2017).Google Scholar
  11. 11.
    T. Ozaki and H. Kino, Phys. Rev. B 69, 19 (2004).CrossRefGoogle Scholar
  12. 12.
    M. A. U. Absor, F. Ishii, H. Kotaka, and M. Saito, AIP Adv. 6 (2), 7 (2016).CrossRefGoogle Scholar
  13. 13.
    H. E. Brauer, H. I. Starnberg, L. J. Holleboom, and H. P. Hughes, Surf. Sci. 331, 6 (1995).Google Scholar
  14. 14.
    M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5 (4), 13 (2013).CrossRefGoogle Scholar
  15. 15.
    M. Javaid, S. P. Russo, A. D. Greentree, and D. W. Drumm, Electron. Struct. 1, 20 (2017).Google Scholar
  16. 16.
    M. Moustafa, T. Zandt, C. Janowitz, and R. Manzke, Phys. Rev. B 80 (3), 6 (2009).CrossRefGoogle Scholar
  17. 17.
    Q. Zhao, Y. Guo, K. Si, Z. Ren, J. Bai, and X. Xu, Phys. Status Solidi B 254 (9), 11 (2017).Google Scholar
  18. 18.
    G. Cassabois, P. Valvin, and B. Gil, Nat. Photon. 10 (4), 7 (2016).CrossRefGoogle Scholar
  19. 19.
    M. Bokdam, P. A. Khomyakov, G. Brocks, Z. Zhong, and P. J. Kelly, Nano Lett. 11 (11), 5 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98 (20), 4 (2007).Google Scholar
  21. 21.
    L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Science (Washington, DC, U. S.) 320 (5874), 3 (2008).CrossRefGoogle Scholar
  22. 22.
    A. Maiti, Nat. Mater. 2, 440 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    E. Ertekin, P. A. Greaney, T. D. Sands, and D. C. Chrzan, MRS Online Proc. Lib. Arch. 737, 5 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Nanoelectronic Research Group, Physics Department, Faculty of Science, Urmia UniversityUrmiaIran

Personalised recommendations