Skip to main content
Log in

Electronic Properties of Aluminum Doped Carbon Nanotubes with Stone Wales Defects: Density Functional Theory

  • LOW DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Al-doped single wall carbon nanotube with Stone Wales defect was theoretically analyzed, two different orientations of chiral (8, 4) carbon nanotubes was doped among the joints of defective carbon rings. Density functional theory was implemented to study structural and electronic properties of Al-doped chiral carbon nanotubes. Doping bond lengths as well as their geometrical structure were determined at the different orientations. The electronic properties were also illustrated by evaluation band of the gap energies at each possible doping site. Our results indicated that not only Al-doping tune the band structure, but also dopant site played a crucial rule on manipulating physical properties of chiral carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. M. Alam and A. K. Ray, Phys. Rev. B 77, 035436 (2008).

    Article  ADS  Google Scholar 

  2. D. Kang, X. Yu, M. Ge, F. Xiao, and H. Xu, J. Environ. Sci. 54, 1 (2016).

    Article  Google Scholar 

  3. J. A. Talla, D. Zhang, and S. Curran, J. Mater. Res. 26, 2854 (2011).

    Article  ADS  Google Scholar 

  4. S. Curran, J. Talla, and S. Dias, US Patent No. 8248305 (2012).

  5. L. G. Zhou and S. Q. Shi, Appl. Phys. Lett. 83, 1222 (2003).

    Article  ADS  Google Scholar 

  6. J. Song, H. Liu, Y. Guo, and K. Zhu, Phys. E (Amsterdam, Neth.) 74, 198 (2015).

  7. S. Hu, Z. Li, X. C. Zeng, and J. Yang, J. Phys. Chem. C 112, 8424 (2008).

    Article  Google Scholar 

  8. J. A. Talla and A. F. Alsalieby, Chin. J. Phys. 59, 418 (2019).

    Article  Google Scholar 

  9. L. Pan, Z. Shen, Y. Jia, and X. Dai, Phys. B: Condens. Matter 407, 2763 (2012).

    Article  ADS  Google Scholar 

  10. J. A. Talla and A. A. Ghozlan, J. Adv. Phys. 7, 33 (2018).

    Article  Google Scholar 

  11. P. Partovi-Azar and A. Namiranian, J. Phys.: Condens. Matter 24, 035301 (2012).

    ADS  Google Scholar 

  12. M. Aura, G. Andres, F. R. Perez, and S. Angel, J. Phys.: Conf. Ser. 850, 012006 (2017).

    Google Scholar 

  13. J. A. Talla, Chem. Phys. 392, 71 (2012).

    Article  ADS  Google Scholar 

  14. T. Jamal, Phys. B: Condens. Matter 407, 966 (2012).

    Article  Google Scholar 

  15. H. El-Nasser, Mater. Sci. Res. India 12, 15 (2015).

    Article  Google Scholar 

  16. J. A. Talla, K. A. Al-Khaza’leh, and A. A. Ghozlan, Mater. Focus 7, 1 (2018).

    Article  Google Scholar 

  17. W. Li, G.-Q. Li, X.-M. Lu, J.-J. Ma, P.-Y. Zeng, Q.‑Y. He, and Y.-Z. Wang, Chem. Phys. Lett. 658, 162 (2016).

    Article  ADS  Google Scholar 

  18. A. A. Ahmad, A. M. Alsaad, B. A. Albiss, M. A. Al-Akhras, H. M. El-Nasser, and I. A. Qattan, Phys. B: Condens. Matter 470–471, 21 (2015).

    Article  ADS  Google Scholar 

  19. J. A. Talla, Comput. Condens. Matter 19, e00378 (2019).

    Article  Google Scholar 

  20. H. F. Bettinger, J. Phys. Chem. B 109, 6922 (2005).

    Article  Google Scholar 

  21. J. A. Talla, M. Nairat, K. Khazaeleh, A. A. Ghozlan, and S. A. Salman, Comput. Condens. Matter 16, e00311 (2018).

    Article  Google Scholar 

  22. H. El-Nasser and O. D. Ali, Iran. Polym. J. 19, 57 (2010).

    Google Scholar 

  23. R. Wang, D. Zhang, W. Sun, Z. Han, and C. Liu, J. Mol. Struct.: THEOCHEM 806, 93 (2007).

    Article  Google Scholar 

  24. X. Zhou and W. Q. Tian, J. Phys. Chem. C 115, 11493 (2011).

    Article  Google Scholar 

  25. J. A. Talla, Comput. Condens. Matter 15, 25 (2018).

    Article  Google Scholar 

  26. B. Xu, J. Ouyang, Y. Xu, M. S. Wu, G. Liu, and C. Y. Ouyang, Comput. Mater. Sci. 68, 367 (2013).

    Article  Google Scholar 

  27. M. T. Baei, Fullerenes, Nanotubes Carbon Nanostruct. 20, 681 (2012).

    Article  ADS  Google Scholar 

  28. S. A. Salman, J. A. Talla, and M. A. Al-Othoum, Mater. Express 8, 353 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal A. Talla.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nairat, M., Talla, J.A. Electronic Properties of Aluminum Doped Carbon Nanotubes with Stone Wales Defects: Density Functional Theory. Phys. Solid State 61, 1896–1903 (2019). https://doi.org/10.1134/S1063783419100421

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419100421

Keywords:

Navigation