Skip to main content
Log in

Influence of the Guinier–Preston Zones on the Concentration Dependence of the Yield Point of the Aged Two-Component Alloys in Conditions of High-Speed Deformation

  • MECHANICAL PROPERTIES, PHYSICS OF STRENGTH, AND PLASTICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The glide of an ensemble of edge dislocations at the high-speed deformation of an aged binary metal alloy is theoretically analyzed. The yield stress of the alloy is a nonmonotone function of the second component concentration, which has a maximum and a minimum under certain conditions. The maximum corresponds to the transfer from the dominating influence of dislocation collective interaction on creation of a spectral gap to the prevalence of the influence of collective interaction of atoms of the second component. The minimum of the obtained curve corresponds to the transfer from the prevalence of the drag of the dislocation by the Guinier–Preston zones to the prevalence of its drag by the atoms of the second component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCE

  1. P. N. Mayer and A. E. Mayer, J. Appl. Phys. 120, 075901 (2016).

    Article  ADS  Google Scholar 

  2. J. Lee, D. Veysset, J. Singer, M. Retsch, G. Saini, T. Pezeril, K. Nelson, and E. Thomas, Nat. Commun. 3, 1164 (2012).

    Article  ADS  Google Scholar 

  3. G. A. Malygin and O. V. Klyavin, Phys. Solid State 59, 1987 (2017).

    Article  ADS  Google Scholar 

  4. H. Hallberg, K. Ryttberg, and M. Ristinmaa, ASCE J. Eng. Mech. 135, 345 (2009).

    Article  Google Scholar 

  5. D. Batani, Eur. Phys. Lett. 114, 6500 (2016).

    Article  Google Scholar 

  6. D. Tramontina, E. Bringa, P. Erhart, J. Hawreliak, T. Germann, R. Ravelo, A. Higginbotham, M. Suggit, J. Wark, N. Park, A. Stukowski, and Y. Tang, High Energy Density Phys. 10, 9 (2014).

    Article  ADS  Google Scholar 

  7. E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 114, 083511 (2013).

    Article  ADS  Google Scholar 

  8. G. I. Kanel’, V. E. Fortov, and S. V. Razorenov, Phys. Usp. 50, 771 (2007).

    Article  ADS  Google Scholar 

  9. I. N. Borodin and A. E. Mayer, Tech. Phys. 58, 1159 (2013).

    Article  Google Scholar 

  10. V. I. Zel’dovich, E. V. Shorokhov, S. V. Dobatkin, N. Yu. Frolova, A. E. Kheifets, I. V. Khomskaya, P. A. Nasonov, and A. A. Ushakov, Phys. Met. Metallogr. 111, 421 (2011).

    Article  ADS  Google Scholar 

  11. A. Yu. Stroev, O. I. Gorbatov, Yu. N. Gornostyrev, and P. A. Korzhavyi, Phys. Rev. Mater. 2, 033603 (2018).

    Article  Google Scholar 

  12. W. Verestek, A.-P. Prskalo, M. Hummel, P. Binkele, and S. Schmauder, Phys. Mesomech. 20, 291 (2017).

    Article  Google Scholar 

  13. A. Yu. Kuksin and A. V. Yanilkin, Mech. Solids 50, 44 (2015).

    Article  ADS  Google Scholar 

  14. A. V. Yanilkin, V. S. Krasnikov, A. Yu. Kuksin, and A. E. Mayer, Int. J. Plast. 55, 94 (2014).

    Article  Google Scholar 

  15. V. V. Malashenko, Tech. Phys. Lett. 44, 827 (2018).

    Article  ADS  Google Scholar 

  16. V. V. Malashenko, Phys. Solid State 58, 2045 (2016).

    Article  ADS  Google Scholar 

  17. V. V. Malashenko, Phys. Solid State 57, 2461 (2015).

    Article  ADS  Google Scholar 

  18. V. V. Malashenko, Tech. Phys. Lett. 45, (2019, in press).

  19. V. V. Malashenko, Phys. Solid State 56, 1579 (2014).

    Article  ADS  Google Scholar 

  20. V. V. Malashenko, Phys. B (Amsterdam, Neth.) 404, 3890 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Malashenko.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malashenko, V.V. Influence of the Guinier–Preston Zones on the Concentration Dependence of the Yield Point of the Aged Two-Component Alloys in Conditions of High-Speed Deformation. Phys. Solid State 61, 1800–1803 (2019). https://doi.org/10.1134/S106378341910024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341910024X

Keywords:

Navigation