Skip to main content
Log in

Simulation of Wetting Phase Transitions in Thin Films

  • PHASE TRANSITIONS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Based on the hydrodynamic model, the kinetics of wetting phase transitions in nanoscale liquid films on the substrate surface is analyzed. In the range of metastable states, the features of the formation of equilibrium clusters are studied and corresponding film thickness distributions are calculated. In the range of unstable states, the kinetics of the phase transition resulting in cluster formation is analyzed. In the early stage, regions shaped as holes with a film thickness close to the equilibrium one are formed. Hole coalescence leads to a film material redistribution followed by clustering. For this process, the kinetics of the average hole size and concentration is calculated. For formed clusters, the kinetics of the average radius, average height, concentration, and their radius and height distribution function are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Nanoscale Liquid Interfaces, Ed. by T. Ondarçuhu and J. P. Aimé (CRC, Taylor, Boca Raton, FL, 2013).

    Google Scholar 

  2. J. Cahn, J. Chem. Phys. 66, 3667 (1977).

    Article  ADS  Google Scholar 

  3. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Rev. Mod. Phys. 81, 739 (2009).

    Article  ADS  Google Scholar 

  4. A. Oron, S. H. Davis, and S. G. Bankoff, Rev. Mod. Phys. 69, 931 (1997).

    Article  ADS  Google Scholar 

  5. J. Becker, G. Grün, R. Seemann, H. Mantz, Kh. Jacobs, K. R. Mecke, and R. Blossey, Nat. Mater. 2, 59 (2003).

    Article  ADS  Google Scholar 

  6. R. V. Craster and O. K. Matar, Rev. Mod. Phys. 81, 1131 (2009).

    Article  ADS  Google Scholar 

  7. X.-J. Cai, J. Genzer, and R. J. Spontak, Langmuir 30, 11689 (2014).

    Article  Google Scholar 

  8. M. Kalloudis, E. Glynos, S. Pispas, J. Walker, and V. Koutsos, Langmuir 29, 2339 (2013).

    Article  Google Scholar 

  9. Ya. E. Geguzin and Yu. S. Kaganovskii, Diffusion Processes on the Surface of the Crystal (Energoatomizdat, Moscow, 1984) [in Russian].

    Google Scholar 

  10. Ya. E. Geguzin and Yu. S. Kaganovskii, Sov. Phys. Usp. 21, 611 (1978).

    Article  ADS  Google Scholar 

  11. B. B. Straumal, Grain Boundary Phase Transitions (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  12. S. V. Bulyarskii, Tech. Phys. 56, 1605 (2011).

    Article  Google Scholar 

  13. S. V. Bulyarskii and A. S. Basaev, Phys. Solid State 57, 1055 (2015).

    Article  ADS  Google Scholar 

  14. V. M. Samsonov, N. Yu. Sdobnyakov, M. V. Samsonov, D. N. Sokolov, and N. V. Novozhilov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 831 (2015).

    Article  Google Scholar 

  15. K. B. Glasner and T. P. Witelski, Phys. Rev. E 67, 16302 (2003).

    Article  ADS  Google Scholar 

  16. M. B. Graton and T. P. Witelski, Phys. D (Amsterdam, Neth.) 238, 2380 (2009).

  17. A. A. Pahlavan, L. Cueto-Felgueroso, A. E. Hosoi, G. H. McKinely, and R. Juanes, J. Fluid Mech. 845, 642 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  18. K. Mahdy, A. Afkhami, and L. Kondic, Phys. Fluids 26, 62002 (2016).

    Article  Google Scholar 

  19. B. V. Deryagin, N. V. Churaev, and M. V. Muller, Surface Forces (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  20. P. E. L’vov and V. V. Svetukhin, Mod. Simul. Mater. Sci. Eng. 25, 075006 (2017).

    Article  ADS  Google Scholar 

  21. S. Dai and Q. Du, J. Comp. Phys. 310, 85 (2016).

    Article  ADS  Google Scholar 

  22. G. Grün, K. Mecke, and M. Rauscher, J. Status Phys. 122, 1261 (2006).

    Article  ADS  Google Scholar 

  23. S. A. Kukushkin, Poverkhnost’: Fiz., Khim., Mekh. 7, 22 (1983).

    Google Scholar 

  24. T. V. Sakalo and S. A. Kukushkin, Acta Met. Mater. 42, 2803 (1994).

    Article  Google Scholar 

  25. S. A. Kukushkin and V. V. Slezov, Dispersed Systems on the Surface of Solids: Mechanisms for the Formation of Thin Films (An Evolutionary Approach) (Nauka, St. Petersburg, 1996) [in Russian].

    Google Scholar 

  26. R. Seeman, S. Herminghaus, and K. Jacobs, Phys. Rev. Lett. 86, 5534 (2001).

    Article  ADS  Google Scholar 

  27. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31, 688 (1959).

    Article  ADS  Google Scholar 

  28. H. Aaronson, M. Enomoto, and J. Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys (CRC, Taylor Francis Group, Boca Raton, FL, 2010).

    Google Scholar 

  29. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 57, 1213 (2015).

    Article  ADS  Google Scholar 

  30. P. E. L’vov and V. V. Svetukhin, Mod. Simul. Mater. Sci. Eng. 27, 025002 (2019).

    Article  ADS  Google Scholar 

  31. J. Zhu, L.-Q. Chen, J. Shen, and V. Tikare, Phys. Rev. E 60, 3564 (1999).

    Article  ADS  Google Scholar 

  32. M. Miller and R. Forbes, Atom-Probe Tomography: The Local Electrode Atom Probe (Springer, New York, 2014).

    Book  Google Scholar 

  33. P. E. L’vov and V. V. Svetukhin, State Registration Certificate of Computer Program No. 2017616554 (2017).

Download references

Funding

This study was supported by the Ministry of Science and Higher Education (project no. 0004-2019-0001), the Russian Foundation for Basic Research and the Government of the Ulyanovsk oblast (project no. 18-42-732002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. L’vov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L’vov, P.E., Svetukhin, V.V., Bulyarskii, S.V. et al. Simulation of Wetting Phase Transitions in Thin Films. Phys. Solid State 61, 1872–1881 (2019). https://doi.org/10.1134/S1063783419100238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419100238

Keywords:

Navigation