Skip to main content
Log in

The Unoccupied Electronic States of the Ultrathin Diphenylphthalide Films on the Surface of the Highly Oriented Pyrolytic Graphite

  • POLYMERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of diagnostics of the atomic composition of a diphenylphthalide (DPP) film thermally precipitated in vacuum by the of X-ray photoelectric spectroscopy (XPS) method are presented. The results of examination of the unoccupied electronic states of the ultrathin DPP films with the thickness up to 10 nm on the surface of the highly oriented pyrolytic graphite (HOPG) by the total current spectroscopy (TCS) method in the energy range from 5 to 20 eV above EF are presented. In this range, the main maxima in the total current spectra are identified. The analysis of the TCS results with consideration of the theoretical calculation results has shown that the low-energy maxima observed at the energies from 6 to 7.5 eV are induced predominately by π* electron orbitals of DPP films. The values of the energy Evac in relation to EF, i.e., of the electron work function in the DPP films at the film thickness of 5–10 nm, are found experimentally at a level of 4.3 ± 0.1 eV. The negative charge transfer from an organic film to the substrate corresponds to the formation of the HOPG/DPP boundary potential barrier during the thermal deposition of the DPP film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. N. Lachinov and N. V. Vorob’eva, Phys. Usp. 49, 1223 (2006).

    Article  ADS  Google Scholar 

  2. N. Johansson, A. N. Lachinov, S. Stafstrom, and W. R. Salaneck, Synth. Met. 67, 319 (1994).

    Article  Google Scholar 

  3. A. R. Yusupov, A. N. Lachinov, L. R. Kalimullina, R. M. Gadiev, and D. V. Nikitina, Phys. Solid State 61, 450 (2019).

    Article  ADS  Google Scholar 

  4. A. N. Lachinov, E. R. Zhdanov, R. G. Rakhmeev, R. B. Salikhov, and V. A. Antipin, Phys. Solid State 52, 195 (2010).

    Article  ADS  Google Scholar 

  5. N. L. Asfandiarov, S. A. Pshenichnyuk, A. S. Vorob’ev, E. P. Nafikova, A. N. Lachinov, V. A. Kraikin, and A. Modelli, J. Chem. Phys. 142, 174308 (2015).

    Article  ADS  Google Scholar 

  6. A. N. Aleshin, P. S. Krylov, A. S. Berestennikov, I. P. Shcherbakov, V. N. Petrov, V. V. Kondratiev, and S. N. Eliseeva, Synth. Met. 217, 7 (2016).

    Article  Google Scholar 

  7. P. S. Krylov, A. S. Berestennikov, S. A. Fefelov, A. S. Komolov, and A. N. Aleshin, Phys. Solid State 58, 2567 (2016).

    Article  ADS  Google Scholar 

  8. N. L. Asfandiarov, S. A. Pshenichnyuk, R. G. Rakhmeev, A. N. Lachinov, and V. A. Kraikin, Tech. Phys. 63, 1054 (2018).

    Article  Google Scholar 

  9. B. Handke, L. Klita, and W. Niemiec, Surf. Sci. 666, 70 (2017).

    Article  ADS  Google Scholar 

  10. A. S. Komolov, E. F. Lazneva, and S. N. Akhremtchik, Appl. Surf. Sci. 256, 2419 (2010).

    Article  ADS  Google Scholar 

  11. M. Krzywiecki, L. Grzadziel, P. Powroznik, M. Kwoka, J. Rechmann, and A. Erbe, Phys. Chem. Chem. Phys. 20, 16092 (2018).

    Article  Google Scholar 

  12. S. A. Pshenichnyuk, A. Modelli, E. F. Lazneva, and A. S. Komolov, J. Phys. Chem. A 120, 2667 (2016).

    Article  Google Scholar 

  13. A. S. Komolov, E. F. Lazneva, S. N. Akhremtchik, N. S. Chepilko, and A. A. Gavrikov, J. Phys. Chem. C 117, 12633 (2013).

    Article  Google Scholar 

  14. J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng. R 64, 1 (2009).

    Article  Google Scholar 

  15. A. S. Komolov and P. J. Moeller, Appl. Surf. Sci. 244, 573 (2005).

    Article  ADS  Google Scholar 

  16. I. Bartos, Progr. Surf. Sci. 59, 197 (1998).

    Article  ADS  Google Scholar 

  17. A. S. Komolov, K. Schaumburg, P. J. Moeller, and V. V. Monakhov, Appl. Surf. Sci. 142, 591 (1999).

    Article  ADS  Google Scholar 

  18. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Ed. by J. Chastain, 2nd ed. (Perkin-Elmer, Eden Prairie, 1992).

    Google Scholar 

  19. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, V. S. Sobolev, Yu. A. Panina, S. A. Pshenichnyuk, and N. L. Asfandiarov, Phys. Solid State 61, 468 (2019).

    Article  ADS  Google Scholar 

  20. A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton, J. Phys. Chem. C 115, 17009 (2011).

    Article  Google Scholar 

  21. A. S. Komolov, Y. M. Zhukov, E. F. Lazneva, A. N. Aleshin, S. A. Pshenichnuk, N. B. Gerasimova, Yu. A. Panina, G. D. Zashikhin, and A. V. Baramygin, Mater. Des. 113, 319 (2017).

    Article  Google Scholar 

  22. I. A. Averin, A. A. Karmanov, V. A. Moshnikov, I. A. Pronin, S. E. Igoshina, A. P. Sigaev, and E. I. Terukov, Phys. Solid State 57, 2373 (2015).

    Article  ADS  Google Scholar 

  23. A. S. Komolov, P. J. Møller, and E. F. Lazneva, J. Electron. Spectrosc. Relat. Phenom. 131–132, 67 (2003).

    Article  Google Scholar 

  24. A. S. Komolov and P. J. Møller, Synth. Met. 138, 119 (2003).

    Article  Google Scholar 

  25. R. A. Rosenberg, P. J. Love, and V. Rehn, Phys. Rev. B 33, 4034 (1986).

    Article  ADS  Google Scholar 

  26. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, A. V. Baramygin, G. D. Zashikhin, and S. A. Pshenichnyuk, Phys. Solid State 58, 377 (2016).

    Article  ADS  Google Scholar 

  27. T. Graber, F. Forster, A. Schoell, and F. Reinert, Surf. Sci. 605, 878 (2011).

    Article  ADS  Google Scholar 

  28. A. L. Shu, W. E. McClain, J. Schwartz, and A. Kahn, Org. Electron. 15, 2360 (2014).

    Article  Google Scholar 

  29. S. Braun, W. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).

    Article  Google Scholar 

  30. I. G. Hill, J. Schwartz, and A. Kahn, Org. Electron. 1, 5 (2000).

    Article  Google Scholar 

  31. I. G. Hill, A. Kahn, J. Cornil, D. A. dos Santos, and J. L. Bredas, Chem. Phys. Lett. 317, 444 (2000).

    Article  ADS  Google Scholar 

Download references

Funding

The studies of DPP by TCS and XPS techniques were supported by the Russian Science Foundation, project no. 19-13-00021. The HOPG diagnosis was supported by the Russian Foundation for Basic Research, project no. 18-03-00020. The studies were conducted using the equipment of the Research park of St. Petersburg State University, “Physical methods of surface investigation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komolov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komolov, A.S., Lazneva, E.F., Gerasimova, N.B. et al. The Unoccupied Electronic States of the Ultrathin Diphenylphthalide Films on the Surface of the Highly Oriented Pyrolytic Graphite. Phys. Solid State 61, 1922–1926 (2019). https://doi.org/10.1134/S1063783419100214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419100214

Keywords:

Navigation