Skip to main content
Log in

Mechanism of Hardening of Ultrafine-Grained Aluminum after Annealing

  • MECHANICAL PROPERTIES, PHYSICS OF STRENGTH, AND PLASTICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theoretical model is proposed that describes the hardening mechanism of ultrafine-grained aluminum obtained by high pressure torsion after low-temperature annealing. Within this model, the hardening is due to the successive transformation of the grain-boundary dislocation structure. In particular, plastic deformation is occurs through the emission of lattice dislocations from triple junctions of grain boundaries containing pile-ups of grain-boundary dislocations, the subsequent sliding of lattice dislocations in the grain body, and the formation of walls of climbing grain-boundary dislocations along opposite grain boundaries. The energy characteristics and critical stresses for emission of lattice dislocations are calculated. Theoretical dependences of the flow stress on the plastic strain, which demonstrate good qualitative and quantitative agreement with experimental data, are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Y. Saito, N. Tsuji, H. Utsonomis, and T. Sakai, Acta Mater. 47, 579 (1999).

    Article  Google Scholar 

  2. Z. Horita, T. Fujinami, M. Nemoto, and T. G. Langdon, Met. Mater. Trans. A 31, 691 (2000).

    Article  Google Scholar 

  3. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  4. J. K. Kim, H. K. Kim, J. W. Park, and W. J. Kim, Scr. Mater. 53, 1207 (2005).

    Article  Google Scholar 

  5. X. Huang, N. Hansen, and N. Tsuji, Science (Washington, DC, U. S.) 312, 249 (2006).

    Article  ADS  Google Scholar 

  6. A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, CIRP J. Manuf. Sci. Technol. 57, 716 (2008).

    Article  Google Scholar 

  7. A. M. Mavlyutov, A. S. Bondarenko, M. Yu. Murashkin, E. V. Boltynjuk, R. Z. Valiev, and T. S. Orlova, J. Alloys Compd. 698, 539 (2017).

    Article  Google Scholar 

  8. A. M. Mavlyutov, T. A. Latynina, M. Yu. Murashkin, R. Z. Valiev, and T. S. Orlova, Phys. Solid State 59, 1970 (2017).

    Article  ADS  Google Scholar 

  9. T. S. Orlova, A. M. Mavlyutov, A. S. Bondarenko, I. A. Kasatkin, M. Yu. Murashkin, and R. Z. Valiev, Philos. Mag. 96, 2429 (2016).

    Article  ADS  Google Scholar 

  10. N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen, Acta Mater. 57, 4198 (2009).

    Article  Google Scholar 

  11. B. N. Semenov, I. V. Smirnov, Yu. V. Sud’enkov, and N. V. Tatarinova, Mater. Phys. Mech. 24, 319 (2015).

    Google Scholar 

  12. T. S. Orlova, A. V. Ankudinov, A. M. Mavlyutov, and N. N. Resnina, Rev. Adv. Mater. Sci. 57, 110 (2018).

    Article  Google Scholar 

  13. M. Chen, E. Ma, K. J. Hemker, H. Sheng, Y. Wang, and X. Cheng, Science (Washington, DC, U. S.) 300, 1275 (2003).

    Article  ADS  Google Scholar 

  14. X. Z. Liao, F. Zhou, E. J. Lavernia, S. G. Srinivasan, M. I. Baskes, D. W. He, and Y. T. Zhu, Appl. Phys. Lett. 83, 632 (2003).

    Article  ADS  Google Scholar 

  15. X. Z. Liao, F. Zhou, E. J. Lavernia, D. W. He, and Y. T. Zhu, Appl. Phys. Lett. 83, 5062 (2003).

    Article  ADS  Google Scholar 

  16. X. Z. Liao, Y. H. Zhao, S. G. Srinivasan, Y. T. Zhu, R. Z. Valiev, and D. V. Gunderov, Appl. Phys. Lett. 84, 592 (2004).

    Article  ADS  Google Scholar 

  17. F. Mompiou, D. Caillard, M. Legros, and H. Mughrabi, Acta Mater. 60, 3402 (2012).

    Article  Google Scholar 

  18. X. Sauvage, G. Wilde, S. V. Divinski, Z. Horita, and R. Z. Valiev, Mater. Sci. Eng. A 540, 1 (2012).

    Article  Google Scholar 

  19. V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Nat. Mater. 1, 45 (2002).

    Article  ADS  Google Scholar 

  20. V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Acta Mater. 50, 5005 (2002).

    Article  Google Scholar 

  21. H. Van Swygenhoven, Mater. Sci. Eng. A 483–484, 33 (2008).

    Article  Google Scholar 

  22. M. Yu. Gutkin, A. L. Kolesnikova, I. A. Ovid’ko, and N. V. Skiba, J. Metastab. Nanocryst. Mater. 12, 47 (2002).

    Google Scholar 

  23. A. A. Fedorov, M. Yu. Gutkin, and I. A. Ovid’ko, Acta Mater. 51, 887 (2003).

    Article  Google Scholar 

  24. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Acta Mater. 51, 4059 (2003).

    Article  Google Scholar 

  25. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Phys. Solid State 46, 2042 (2004).

    Article  ADS  Google Scholar 

  26. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Phys. Solid State 47, 1662 (2005).

    Article  ADS  Google Scholar 

  27. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, J. Phys. D 38, 3921 (2005).

    Article  ADS  Google Scholar 

  28. I. A. Ovid’ko and N. V. Skiba, Scr. Mater. 67, 13 (2012).

    Article  Google Scholar 

  29. T. S. Orlova, N. V. Skiba, A. M. Mavlyutov, M. Yu. Murashkin, R. Z. Valiev, and M. Yu. Gutkin, Rev. Adv. Mater. Sci. 57, 224 (2018).

    Article  Google Scholar 

  30. J. Hirth and I. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967; Atomizdat, Moscow, 1972).

  31. A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon, Oxford, 1995).

    Google Scholar 

  32. A. P. Zhilyaev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  33. R. A. Andrievskii, Basics of Nanostructured Materials Science (BINOM, Moscow, 2012) [in Russian].

    Google Scholar 

  34. K. Koch, I. Ovid’ko, S. Sil, and S. Veprek, Structural Nanocrystalline Materials. Scientific Principles and Applications (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  35. E. V. Kozlov, A. M. Glezer, N. A. Koneva, N. A. Popova, and I. A. Kurzina, Basics of Plastic Deformation of Nanostructured Materials (Fizmatlit, Moscow, 2016) [in Russian].

    Google Scholar 

  36. R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, New York, 2013; Eko-Vektor, St. Petersburg, 2017).

  37. T. Mura, in Advances in Material Research, Ed. by H. Herman (Interscience, New York, 1968), Vol. 3.

    Google Scholar 

  38. A. Hasnaoui, H. Van Swygenhoven, and P. M. Derlet, Acta Mater. 50, 3927 (2002).

    Article  Google Scholar 

  39. J. Hu, Y. N. Shi, X. Sauvage, G. Sha, and K. Lu, Science (Washington, DC, U. S.) 355, 1292 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 19-08-00474) and (for N.V.  Skiba) Russian Ministry of Education and Science (task 16.3483.2017/PCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Gutkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutkin, M.Y., Latynina, T.A., Orlova, T.S. et al. Mechanism of Hardening of Ultrafine-Grained Aluminum after Annealing. Phys. Solid State 61, 1790–1799 (2019). https://doi.org/10.1134/S1063783419100160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419100160

Keywords:

Navigation