Skip to main content
Log in

Micromagnetic Modeling of Spin-Wave Excitations in Corrugated YIG Films

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In this paper, we study the features of the spin-wave excitation spectrum in a YIG film with a thickness of 0.4 μm and a magnetization of 1.1 kG corrugated due to the periodic relief of the substrate in the form of grooves with a width of 10 μm and a depth of 0.5 μm, with sloping walls, and a period of 20 μm by micromagnetic modeling. Calculations performed for the orientations of the external magnetic field applied in the film plane along (θ = 0) and across (θ = 90°) grooves show that film shape anisotropy leads to quantization of the spectrum and localization of the spin-wave excitations in various parts of the sample. In this case, the spatial distribution of the magnetization amplitude at frequencies in the spectrum at θ = 90° can be characterized by several spatial scales, differing by orders of magnitude. This is explained by the strong inhomogeneity of the ground state on the walls of the grooves at θ = 90°, which leads to the effective excitation of the short-wave part of the spectrum of spin waves in a periodic structure according to the Schlömann mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. L. White, R. M. H. New, and R. F. W. Pease, IEEE Trans. Magn. 33, 990 (1997).

    Article  ADS  Google Scholar 

  2. V. Baltz, S. Landis, B. Rodmacq, and B. Dieny, J. Magn. Magn. Mater. 290–291, 1286 (2005).

    Article  ADS  Google Scholar 

  3. D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999).

    Article  ADS  Google Scholar 

  4. S. H. Charap, P. L. Lu, and Y. He, IEEE Trans. Magn. 33, 978 (1997).

    Article  ADS  Google Scholar 

  5. J. Briones, F. Montaigne, and D. Lacour, Appl. Phys. Express 3, 073002 (2010).

    Article  ADS  Google Scholar 

  6. J. Fassbender, T. Strache, M. O. Liedke, D. Marko, S. Wintz, K. Lenz, A. Keller, S. Facsko, I. Monch, and J. McCord, New J. Phys. 11, 125002 (2009).

    Article  ADS  Google Scholar 

  7. E. N. Beginin, A. V. Sadovnikov, A. Yu. Sharaevskaya, A. I. Stognij, and S. A. Nikitov, Appl. Phys. Lett. 112, 122404 (2018).

    Article  ADS  Google Scholar 

  8. P. A. Popov, A. Yu. Sharaevskaya, D. V. Kalyabin, A. I. Stognii, E. N. Beginin, A. V. Sadovnikov, and S. A. Nikitov, J. Commun. Technol. Electron. 63, 1431 (2018).

    Article  Google Scholar 

  9. P. A. Popov, A. Yu. Sharaevskaya, E. N. Beginin, A. V. Sadovnikov, A. I. Stognij, D. V. Kalyabin, and S. A. Nikitov, J. Magn. Magn. Mater. 476, 423 (2019).

    Article  ADS  Google Scholar 

  10. A. Walthe, C. Marcoux, B. Desloges, R. Grechishkin, D. Givord, and N. M. Dempsey, J. Magn. Magn. Mater. 321, 590 (2009).

    Article  ADS  Google Scholar 

  11. J. Heyderman, S. Czekaj, F. Nolting, E. Müller, P. Fischer, Ph. Gasser, and L. López-Díaz, J. Appl. Phys. 99, 063904 (2006).

    Article  ADS  Google Scholar 

  12. V. Baltz, J. Sort, B. Rodmacq, B. Dieny, and S. Landis, Appl. Phys. Lett. 84, 4923 (2004).

    Article  ADS  Google Scholar 

  13. T. C. Ulbrich, D. Makarov, G. Hu, I. L. Guhr, D. Suess, T. Schrefl, and M. Albrecht, Phys. Rev. Lett. 96, 077202 (2006).

    Article  ADS  Google Scholar 

  14. M. V. Sapozhnikov, L. I. Budarin, and E. S. Demidov, J. Magn. Magn. Mater. 449, 68 (2018).

    Article  ADS  Google Scholar 

  15. M. Körner, K. Lenz, R. A. Gallardo, M. Fritzsche, A. Mücklich, S. Facsko, J. Lindner, P. Landeros, and J. Fassbender, Phys. Rev. B 88, 054405 (2013).

    Article  ADS  Google Scholar 

  16. M. Krawczyk and H. Puszkarski, Phys. Rev. B 77, 054437 (2008).

    Article  ADS  Google Scholar 

  17. M. Krawczyk and H. Puszkarski, Cryst. Res. Technol. 41, 547 (2006).

    Article  Google Scholar 

  18. Yu. V. Khivintsev, Yu. A. Filimonov, R. I. Kemlei, and Z. Ya. Tselinskii, in Proceedings of the International Conference on Actual Problems of Electronic Instrumentation APEI-2008 (Saratov. Gos. Tech. Univ., Saratov, 2008), p. 142.

  19. M. Okuda, T. Schwarze, J-C. Eloi, S. E. Ward Jones, P. J. Heard, A. Sarua, E. Ahmad, V. V. Kruglyak, D. Grundler, and W. Schwarzacher, Nanotechnology 28, 155301 (2017).

    Article  ADS  Google Scholar 

  20. M. Mruczkiewicz, E. S. Pavlov, S. L. Vysotsky, M. Krawczyk, Yu. A. Filimonov, and S. A. Nikitov, Phys. Rev. B 90, 174416 (2014).

    Article  ADS  Google Scholar 

  21. M. Mruczkiewicz, M. Krawczyk, V. K. Sakharov, Yu. V. Khivintsev, Yu. A. Filimonov, and S. A. Nikitov, J. Appl. Phys. 113, 093908 (2013).

    Article  ADS  Google Scholar 

  22. E. V. Skorohodov, R. V. Gorev, R. R. Yakubov, E. S. Demidov, Yu. V. Khivintsev, Yu. A. Filimonov, and V. L. Mironov, J. Magn. Magn. Mater. 424, 118 (2017).

    Article  ADS  Google Scholar 

  23. S. L. Vysotskii, S. A. Nikitov, Yu. A. Filimonov, and Yu. V. Khivintsev, JETP Lett. 88, 461 (2008).

    Article  ADS  Google Scholar 

  24. Yu. V. Khivintsev, V. K. Sakharov, S. L. Vysotskii, Yu. A. Filimonov, A. I. Stognii, and S. A. Nikitov, Tech. Phys. 63, 1029 (2018).

    Article  Google Scholar 

  25. N. Zhu, H. Chang, A. Franson, T. Liu, X. Zhang, E. Johnston-Halperin, M. Wu, and H. X. Tang, Appl. Phys. Lett. 110, 252401 (2017).

    Article  ADS  Google Scholar 

  26. M. J. Donahue and D. G. Porter, NIST Technical Report NISTIR 6376 (NIST, Gaithersburg, MD, 1999).

  27. M. Dvornik, PhD Thesis (Univ. Exeter, Exeter, UK, 2011), p. 58.

  28. A. Aharoni, J. Appl. Phys. 83, 3432 (1998).

    Article  ADS  Google Scholar 

  29. E. Schlömann, J. Appl. Phys. 35, 159 (1964).

    Article  ADS  Google Scholar 

Download references

Funding

The work was performed as part of the State Project no. 0030-2019-0013 “Spintronics” and was partially supported by the Russian Foundation for Basic Research, project no. 18-57-00008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Sakharov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakharov, V.K., Khivintsev, Y.V., Dudko, G.M. et al. Micromagnetic Modeling of Spin-Wave Excitations in Corrugated YIG Films. Phys. Solid State 61, 1602–1608 (2019). https://doi.org/10.1134/S1063783419090257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419090257

Keywords:

Navigation