Skip to main content

Semiconductor Behavior and Room Temperature Ferromagnetism in e-Beam Evaporated Co/TiO2 Multilayer Thin Films

Abstract

The Co/TiO2 multilayer thin films have been deposited by e-beam evaporation method on glass substrates in vacuum and annealed in air at 773 K for 1 h. The crystal structure, surface morphology, optical properties, electrical properties and magnetic properties of Co/TiO2 multilayer thin films have been systematically investigated. The results showed that the particle sizes were significantly reduced when the samples are annealed and the enlargement of particle size occurred when the samples thickness is increased. The spectroscopic analysis exhibited enhanced transmittance and higher optical band gap of annealed sample than the as-deposited one and it was decreased with sample thickness. The resistivity measurement confirmed resistivity decreament with temperature. Furthermore, by investigating the magnetic properties, room temperature ferromagnetism was observed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Y. Yamada, H. Toyosaki, A. Tsukazaki, and T. Fukumura, J. Appl. Phys. 96, 5097 (2004).

    Article  ADS  Google Scholar 

  2. M. Baghaie Yazdi, M.-L. Goyallon, T. Bitsch, A. Kastner, M. Schlott, and L. Alff, Thin Solid Films 519, 2531 (2011).

    Article  ADS  Google Scholar 

  3. J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R. Leclair, T. S. Santos, and J. S. Moodera, Nat. Mater. 5, 298 (2006).

    Article  ADS  Google Scholar 

  4. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, and S. Koshihara, Science (Washington, DC, U. S.) 291, 854 (2001).

    Article  ADS  Google Scholar 

  5. K. M. Krishnan, A. B. Pakhomov, Y. Bao, P. Blomqvist, Y. Chun, M. Gonzales, K. Griffin, X. Ji, and B. K. Roberts, J. Mater. Sci. 41, 793 (2006).

    Article  ADS  Google Scholar 

  6. N. H. Hong, J. Sakai, N. Poirot, and V. Brize, Phys. Rev. B 73, 132404 (2006).

    Article  ADS  Google Scholar 

  7. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science, 294, 1488 (2001).

    Article  ADS  Google Scholar 

  8. H. Ohno, Science (Washington, DC, U. S.) 281, 951 (1998).

    Article  ADS  Google Scholar 

  9. J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).

    Article  ADS  Google Scholar 

  10. Phtocatalytic Purification and Treatment of Water and Air, Ed. by D. F. Ollis and H. Al-Ekabi (Elsevier, Amsterdam, 1993).

    Google Scholar 

  11. S. J. Pearton, S. J Heo, M. Ivill, D. P. Norton, and T. Steiner, Semicond. Sci. Technol. 19, R59 (2004).

    Article  ADS  Google Scholar 

  12. M. S. Park, S. K. Kwon, and B. I. Min, Phys. Rev. B 65, 161201(R) (2002).

  13. T. Fukumura, Y. Yamada, K. Tamura, and K. Nakajima, Jpn. J. Appl. Phys. 42, 105 (2003).

    Article  ADS  Google Scholar 

  14. S. A. Chambers, T. Droubay, C. M. Wang, and A. S. Lea, Appl. Phys. Lett. 82, 1257 (2003).

    Article  ADS  Google Scholar 

  15. C. Huang, X. Liu, Y. Liu, and Y. Wang, Chem. Phys. Lett. 432, 468 (2006).

    Article  ADS  Google Scholar 

  16. S. Tolansky, Multiple Beam Interferometry of Surface and Films (Oxford Univ. Press, London, 1948).

    MATH  Google Scholar 

  17. C. Fan, P. Xue, and Y. Sun, J. Rare Earths 24, 309 (2006).

    Article  Google Scholar 

  18. V. Stengle, S. Bakardjieva, and N. Murafa, J. Mater. Chem. Phys. 114, 217 (2008).

    Article  Google Scholar 

  19. P. Kubelka and F. Munk, Z. Tech. Phys. (Leipzig) 12, 593 (1931).

    Google Scholar 

  20. P. Kubelka, J. Opt. Soc. Am. 38, 448 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  21. W. E. Vargas and G. A. Niklasson, Appl. Opt. 36, 5580 (1997).

    Article  ADS  Google Scholar 

  22. M. Asemi and M. Ghanaatshoar, Ceram. Int. 42, 6664 (2016).

    Article  Google Scholar 

  23. F. Demichelis, G. Kaniadakis, A. Tagliferro, and E. Tresso, J. Appl. Opt. 26, 1737 (1987).

    Article  ADS  Google Scholar 

  24. Young Ran Park and Kwang Joo Kim, Thin Solid Films 484, 34 (2005).

    Article  ADS  Google Scholar 

  25. S. M. Sze, Semiconductor Devices: Physics and Technology (Wiley, New York, 2001).

    Google Scholar 

  26. J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, Phys. Rev. B 68, 155410 (2003).

    Article  ADS  Google Scholar 

  27. M. Jannesari, M. Asemi, and M. Ghanaatshoar, J. Sol-Gel. Sci. Technol. 83, 181 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of the Department of Applied Physics and Electronic Engineering, Rajshahi University, Central Science Laboratory, Rajshahi University and Atomic Energy Centre, Dhaka for essential samples preparation and characterization. The authors also greatefully appreciate the financial support from the Ministry of Science and Technology of Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Faruk Hossain.

Ethics declarations

The authors declare that there in no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.F., Nahid, M.A., Pervez, M.S. et al. Semiconductor Behavior and Room Temperature Ferromagnetism in e-Beam Evaporated Co/TiO2 Multilayer Thin Films. Phys. Solid State 61, 1363–1369 (2019). https://doi.org/10.1134/S1063783419080298

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419080298

Keywords:

  • Co/TiO2 multilayer
  • e-beam evaporation method
  • grain size
  • band gap
  • room temperature ferromagnetism