Skip to main content
Log in

Magnetic Anisotropy and Super-Sensitive Stress-Magnetoimpedance in Microwires with Positive Magnetostriction

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In glass-coated Co71Fe5B11Si10Cr3 amorphous ferromagnetic microwires subjected to current annealing, a record sensitivity of the magnetoimpedance (MI) to mechanical tensile stresses (stress MI) up to 100% at 100 MPa in the absence of additional magnetic bias fields is achieved. The current annealing, combining the effect of Joule heating and a circular magnetic field, induces a specific helicoidal/circular-type magnetic anisotropy and, thus, allows one to control the behavior of the MI and stress MI, making the wires more suitable for use in sensor devices. As a result of changing the direction of the easy anisotropy axis, external mechanical stresses lead to a change in the direction of the static magnetization, which causes an increase in the sensitivity of stress MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. Larin, L. V. Panina, E.-A. Patroi, D. Patroi, V. Bashev, and N. Kutseva, Phys. Status Solidi A 213, 384 (2016).

    Article  ADS  Google Scholar 

  2. M. H. Phan and H. X. Peng, Prog. Mater. Sci. 53, 323 (2008).

    Article  Google Scholar 

  3. M. Knobel, M. Vázquez, and L. Kraus, Handbook of Magnetic Materials (Elsevier Science, Amsterdam, 2003), Vol. 15, Chap. 5.

    Google Scholar 

  4. A. Zhukova, A. Talaat, M. Ipatov, J. M. Blanco, and V. Zhukova, Alloys Compd. 615, 610 (2014).

    Article  Google Scholar 

  5. O. Thiabgoh, H. Shen, T. Eggers, A. Galati, S. Jiang, J. S. Liu, Z. Li, J. F. Sun, H. Srikanth, and M. H. Phan, Sci. Adv. Mater. Dev. 1, 69 (2016).

    Google Scholar 

  6. A. Zhukov, M. Ipatov, V. Zhukova, C. García, J. Gonzalez, and J. M. Blanco, Phys. Status Solidi A 205, 1367 (2008).

    Article  ADS  Google Scholar 

  7. I. Astefanoaei, D. Radu, and H. Chiriac, J. Phys.: Condens. Matter 18, 2689 (2006).

    ADS  Google Scholar 

  8. Y. Zhao, H. Hao, and Y. Zhang, J. Intermet. 42, 62 (2013).

  9. A. Zhukov, V. Zhukova, J. M. Blanco, and J. Gonzalez, J. Magn. Magn. Mater. 294, 182 (2005).

    Article  ADS  Google Scholar 

  10. L. V. Panina and K. Mohri, Appl. Phys. Lett. 65, 1189 (1994).

    Article  ADS  Google Scholar 

  11. J. Liu, F. X. Qin, D. Chen, H. Shen, H, Wang, D. Xing, M. H. Phan, and J. Sun, J. Appl. Phys. 115, 17A326 (2014).

  12. A. Amirabadizadeh, R. Mardani, and M. Ghanaatshoar, Alloys Compd. 661, 501 (2015).

    Article  Google Scholar 

  13. P. Tiberto, M. Coïsson, F. Vinai, and S. N. Kane, IEEE Trans. Magn. 38, 3093 (2002).

    Article  ADS  Google Scholar 

  14. M. G. Nematov, M. M. Salem, A. M. Adam, M. Ahmad, L. V. Panina, and A. T. Morchenko, IEEE Trans. Magn. 53, 2003106 (2017).

    Article  Google Scholar 

  15. Dong-Ming Chen, Da-Wei Xing, Fa-Xiang Qin, Jing-Shun Liu, Huan Wang, Xiao-Dong Wang, and Jian-Fei Sun, Phys. Status Solidi A 210, 2515 (2013).

    Article  ADS  Google Scholar 

  16. V. Zhukova, J. M. Blanco, M. Ipatov, M. Churyukanova, S. Taskaev, and A. Zhukov, Sci. Rep. 8, 3202 (2018).

    Article  ADS  Google Scholar 

  17. H. Chiriac and T.-A. Ovari, Progr. Mater. Sci. 40, 333 (1996).

    Article  Google Scholar 

  18. A. Zhukov, A. Talaat, M. Ipatov, and V. Zhukova, IEEE Magn. Lett. 6, 2500104 (2015).

    Article  Google Scholar 

  19. D. P. Makhnovskiy and L. V. Panina, Phys. Rev. B 74, 064205 (2006).

    Article  ADS  Google Scholar 

  20. M. Ipatov, V. Zhukova, A. Zhukov, and J. Gonzalez, Sci. Rep. 6, 36180 (2016).

    Article  ADS  Google Scholar 

  21. J.-M. Hu, Z. Li, L.-Q. Chen, and C.-W. Nan, Adv. Mater. 24, 2869 (2012).

    Article  Google Scholar 

  22. J.-M. Hu, Z. Li, L.-Q. Chen, and C.-W. Nan, Nat. Commun. 2, 553 (2011).

    Article  ADS  Google Scholar 

  23. V. S. Larin, A. V. Torcunov, A. Zhukov, J. Gonzalez, M. Vazquez, and L. Panina, J. Magn. Magn. Mater. 249, 39 (2002).

    Article  ADS  Google Scholar 

  24. T. Kitoh, K. Mohri, and T. Uchiyama, IEEE Trans. Magn. 31, 3137 (1995).

    Article  ADS  Google Scholar 

  25. L. V. Panina, A. Dzhumazoda, S. A. Evstigneeva, A. M. Adam, A. T. Morchenko, N. A. Yudanov, and V. G. Kostishyn, J. Magn. Magn. Mater. 459, 147 (2018).

    Article  ADS  Google Scholar 

  26. S. Evstigneeva, A. Morchenko, A. Trukhanov, L. Panina, V. Larin, N. Volodina, N. Yudanov, M. Nematov, H. Hashim, and H. Ahmad, EPJ Web Conf. 185, 04022 (2018).

    Article  Google Scholar 

  27. L. V. Panina, K. Mohri, and D. P. Makhnovskiy, J. Appl. Phys. 85, 5444 (1999).

    Article  ADS  Google Scholar 

  28. M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, and T. Uchiyama, Phys. Status Solidi A 208, 493 (2011).

    Article  ADS  Google Scholar 

  29. A. Zhukov, J. M. Blanco, and J. González, J. Appl. Phys. 87, 1402 (2000).

    Article  ADS  Google Scholar 

  30. M. M. Salem, M. G. Nematov, A. Uddin, L. V. Panina, M. N. Churyukanova, and A. T. Morchenko, J. Phys.: Conf. Ser. 903, 012007 (2017).

    Google Scholar 

  31. K. D. Sossmeier, F. Bohn, H. Chiriac, and M. Carara, J. Phys. D 40, 3233 (2007).

    Article  ADS  Google Scholar 

  32. K. D. Sossmeier, J. T. D. Oliveira, L. F. Schelp, and M. Carara, J. Magn. Magn. Mater. 316, 541 (2007).

    Article  ADS  Google Scholar 

  33. M. G. Nematov, N. A. Yudanov, R. A. Yakubtsev, L. V. Panina, A. V. Beklemisheva, A. T. Morchenko, and A. Thakur, EPJ Conf. 185, 04030 (2018).

Download references

ACKNOWLEDGMENTS

We are grateful to V. Larin (MFTI Ltd., http://www.microwires.com) for providing samples of microwires.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation within the program for the improvement of the competitiveness of the National University of Science and Technology MISiS (carried out by a government decree dated March 16, 2013, no. 211) and by the Russian Foundation for Basic Research (project no. 18-38-00637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Nematov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nematov, M.G., Panina, L.V., Dzhumazoda, A. et al. Magnetic Anisotropy and Super-Sensitive Stress-Magnetoimpedance in Microwires with Positive Magnetostriction. Phys. Solid State 61, 1409–1415 (2019). https://doi.org/10.1134/S1063783419080213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419080213

Keywords:

Navigation