Advertisement

Physics of the Solid State

, Volume 61, Issue 8, pp 1420–1424 | Cite as

Effect of the Degree of Overcooling on Relaxation of the Domain Structure of Triglycine Sulphate

  • O. Yu. MazurEmail author
  • L. I. Stefanovich
FERROELECTRICITY
  • 18 Downloads

Abstract

The formation and evolution of the domain structure in the vicinity of the Curie point is studied in triglycine sulfate crystals subjected to fast cooling TC. We derive an analytical expression for time dependence of the mean characteristic domain size. This expression enable us to investigate the process of enlargement of domain structure through all stages of its relaxation into a state of thermodynamic equilibrium. The model predicts a root-square behavior of the mean domain size, which agrees well with available experimental data. The rate of enlargement of the domain structure is shown to depend on the degree of overcooling. The time dependence of the mean domain size obtained in this study enables us to determine the radius of intermolecular interactions in the crystals under study.

Keywords:

quenched ferroelectric system degree of overcooling domain structure evolution relaxation triglycine sulfate 

Notes

CONFLICT OF INTEREST

We have no conflicts of interest to declare.

REFERENCES

  1. 1.
    A. I. Nikishina, S. N. Drozhdin, and O. M. Golitsyna, Phys. Solid State 48, 1140 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    V. G. Vaks, V. I. Zinenko, and V. E. Shneider, Sov. Phys. Usp. 26, 1059 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    O. Yu. Mazur, L. I. Stefanovich, and V. M. Yurchenko, Phys. Solid State 57, 576 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    O. Yu. Mazur, L. I. Stefanovich, and V. M. Yurchenko, Phys. Solid State 57, 1381 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    N. Tomita, H. Orihara, and Y. Ishibashi, J. Phys. Soc. Jpn. 58, 1190 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    E. Z. Luo, Z. Xie, J. B. Xu, and I. H. Wilson, Phys. Rev. B 61, 203 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    O. M. Golitsyna, S. N. Drozhdin, A. D. Korobova, and V. O. Chulakova, Kondens. Sredy Mezhfaz. Granitsy 19, 42 (2017).Google Scholar
  8. 8.
    M. S. Kosobokov, V. Ya. Shur, E. A. Mingaliev, and S. V. Avdoshin, Phys. Solid State 57, 2020 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Altukhov, I. S. Kas’yanenko, B. A. Kazarov, A. V. Sankin, and S. V. Fillipova, Fundam. Issled., No. 2, 708 (2015).Google Scholar
  10. 10.
    O. M. Golitsyna and S. N. Drozhdin, Phys. Solid State 53, 341 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    T. A. Tryukhan, E. V. Stukova, and S. V. Baryshnikov, Fiz. Elektron., No. 12, 97 (2010).Google Scholar
  12. 12.
    M. N. Levin, V. V. Postnikov, and M. Yu. Palagin, Phys. Solid State 45, 1763 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Krivoglaz and A. A. Smirnov, Theory of Ordered Alloys (GIFML, Moscow, 1958) [in Russian]Google Scholar
  14. 14.
    O. M. Golitsyna, M. V. Grechkina, S. N. Drozhdin, and V. O. Chulakova, Kondens. Sredy Mezhfaz. Granitsy 18, 494 (2016).Google Scholar
  15. 15.
    O. M. Golitsyna, Vestn. VGU, Ser.: Fiz. Mat., No. 2, 54 (2013).Google Scholar
  16. 16.
    S. N. Drozhdin and O. M. Golitsyna, Phys. Solid State 54, 905 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Physics for Mining Processes, National Academy of Sciences of UkraineDnepr-5Ukraine

Personalised recommendations