Skip to main content
Log in

Luminescence Quenching in Magnesium-Doped Alumina Ceramics

  • IMPURITY CENTERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of magnesium impurity on luminescent properties of alumina ceramics sintered at high temperatures under vacuum is studied by pulsed cathodoluminescence, photoluminescence, and thermoluminescence. At dopant concentrations >1 wt %, high-temperature synthesis results in formation of defects associated with magnesium, which were identified in the pulsed cathodoluminescence (520 nm) and photoluminescence (767 nm) spectra, as well as in the thermoluminescence curves (380 K). It is found that increased magnesium concentration leads to luminescence quenching of the intrinsic centers (F centers) of alumina in the PCL emission band at 400 nm, impurity defects (Mn4+ and Cr3+) in the photoluminescence emission bands at 673 and 689 nm, and all the recorded thermoluminescence peaks at 380, 450, and 615 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. P. Feofilov, A. B. Kulinkin, A. K. Kaveev, N. S. Sokolov, and S. M. Suturin, Opt. Mater. 83, 43 (2018).

    Article  ADS  Google Scholar 

  2. I. N. Ogorodnikov, M. D. Petrenko, and V. Yu. Ivanov, Phys. Solid State 60, 134 (2018).

    Article  ADS  Google Scholar 

  3. K. W. Park, H. S. Lim, S. W. Park, G. Deressa, and J. S. Kim, Chem. Phys. Lett. 636, 141 (2015).

    Article  ADS  Google Scholar 

  4. S. V. Nikiforov and V. S. Kortov, Phys. Solid State 59, 1717 (2017).

    Article  ADS  Google Scholar 

  5. M. Oja, E. Tõldsepp, E. Feldbach, H. Mägi, S. Omelkov, and M. Kirm, Rad. Meas. 90, 75 (2016).

    Article  Google Scholar 

  6. S. V. Gorbunov, A. F. Zatsepin, V. A. Pustovarov, S. O. Cholakh, and V. Yu. Yakovlev, Phys. Solid State 47, 733 (2005).

    Article  ADS  Google Scholar 

  7. D. Liu, Ceram. Int. 39, 4765 (2013).

    Article  Google Scholar 

  8. I. V. Gasenkova, N. I. Mukhurov, S. P. Zhvavyi, E. E. Kolesnik, and A. P. Stupak, J. Lumin. 185, 298 (2017).

    Article  Google Scholar 

  9. Q. Liu, Q. Yang, G. Zhao, and S. Lu, J. Alloys Compd. 582, 754 (2014).

    Article  Google Scholar 

  10. N. Rakov and G. S. Maciel, J. Lumin. 127, 703 (2007).

    Article  Google Scholar 

  11. K. Drdlíková, R. Klement, D. Drdláka, T. Spusta, D. Galusekb, and K. Maca, J. Eur. Ceram. Soc. 37, 2695 (2017).

    Article  Google Scholar 

  12. Y. Gui, Q. Yang, Y. Shao, and Y. Yuan, J. Lumin. 184, 232 (2017).

    Article  Google Scholar 

  13. E. H. Penilla, Y. Kodera, and J. E. Garay, Adv. Funct. Mater. 23, 6036 (2013).

    Article  Google Scholar 

  14. B. D. Evans, G. J. Pogatshnik, and Y. Chen, Nucl. Instrum. Methods Phys. Res., Sect. B 91, 258 (1994).

    Google Scholar 

  15. A. I. Kostyukov, A. V. Zhuzhgov, V. V. Kaichev, A. A. Rastorguev, and V. N. Snytnikov, Opt. Mater. 75, 757 (2018).

    Article  ADS  Google Scholar 

  16. N. M. Trindade and L. G. Jacobsohn, J. Lumin. 204, 598 (2018).

    Article  Google Scholar 

  17. J. M. Kalita and M. L. Chithambo, J. Lumin. 182, 177 (2017).

    Article  Google Scholar 

  18. D. Valiev, O. Khasanov, E. Dvilis, S. Stepanov, E. Polisadova, and V. Paygin, Ceram. Int. 44, 20768 (2018).

    Article  Google Scholar 

  19. M. G. Brik, J. Papan, D. J. Jovanović, and M. D. Dramićanin, J. Lumin. 177, 145 (2016).

    Article  Google Scholar 

  20. B. S. Choi, O. G. Jeong, J. C. Park, J. W. Kim, S. J. Lee, J. H. Ryu, J. I. Lee, and H. Cho, J. Ceram. Proc. Res. 17, 778 (2016).

    Google Scholar 

  21. S. S. Raj, S. K. Gupta, V. Grover, K. P. Muthe, V. Natarajan, and A. K. Tyagi, J. Mol. Struct. 1089, 81 (2015).

    Article  ADS  Google Scholar 

  22. S. V. Zvonarev, V. S. Kortov, A. V. Chikin, and P. P. Sannikov, in Physics, Technologies and Innovation (PTI-2016), Ed. by V. A. Volkovich, AIP Conf. Proc. 1767, 020025 (2016).

    Google Scholar 

  23. A. B. Kulinkin, S. P. Feofilov, and R. I. Zakharchenya, Phys. Solid State 42, 857 (2000).

    Article  ADS  Google Scholar 

  24. S. Sanyal and M. S. Akselrod, J. Appl. Phys. 98, 033518 (2005).

    Article  ADS  Google Scholar 

  25. V. Kortov, A. Kiryakov, S. Nikiforov, D. Ananchenko, and S. Zvonarev, Vacuum 143, 433 (2017).

    Article  ADS  Google Scholar 

  26. V. Kortov, S. Zvonarev, A. Kiryakov, and D. Ananchenko, Mater. Chem. Phys. 170, 168 (2016).

    Article  Google Scholar 

  27. M. S. Akselrod, V. S. Kortov, D. I. Kravetsky, and V. I. Gotlib, Rad. Prot. Dosim. 32, 15 (1990).

    Google Scholar 

Download references

FUNDING

This work was supported by the Russian Science Foundation (project no. 18-72-10082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zvonarev.

Additional information

Translated by D. Terpilovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvonarev, S.V., Smirnov, N.O. Luminescence Quenching in Magnesium-Doped Alumina Ceramics. Phys. Solid State 61, 835–839 (2019). https://doi.org/10.1134/S1063783419050408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419050408

Navigation