Skip to main content

Effect of the JJ Interaction of Excited States of the Rare-Earth Ion Pr3+ on Magnetically Polarized Luminescence of Praseodymium-Yttrium Aluminum Garnet

Abstract

The spectra of luminescence and magnetic circular polarization of luminescence of praseodymium–yttrium aluminum garnet Pr3+ : Y3Al5O12 (PrYAG) are studied in the visible spectral region at temperature T = 300 K. An analysis of spectral dependences of magnetooptical and optical spectra makes it possible to identify optical 4 f–4 f-transitions between Stark sublevels of multiplets 3P0, 3P1, 3Н5, and 3Н6 in PrYAG. It was shown that an important role in the spectrum of the degree of magnetic circular polarization of luminescence of this paramagnetic garnet is played by the effect of quantum-mechanical JJ mixing of states of Stark singlets 3Н5 and 3Н6 of non-Kramer rare-earth ion Pr3+ in the “green” luminescence band related to forbidden 4 f → 4 f transition 3P03Н5 in the visible spectral region. To interpret the spectra of magnetic circular polarization of luminescence, the energy of experimentally determined Stark sublevels of multiplets under study, their irreducible representations and wave functions determined by numerical simulation of the energy spectrum of the rare-earth ion Pr3+ in the garnet structure are used.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. The coefficient K can be determined from experimental data, using the relation [18]: \(2\left( {\frac{{\Delta P}}{{\Delta \varepsilon }}} \right){{(\hbar \Gamma )}^{2}}\) = K, where \(\frac{{\Delta P}}{{\Delta \varepsilon }}\) is the slope angle of the experimental linear dependence of the MCPL degree on the energy (or frequencies), Γ is the emission line halfwidth (at I = I0/2, where I0 is the emission line intensity at its center).

REFERENCES

  1. J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Mor-rison, and G. A. Turner, Chem. Phys. 134, 241 (1989).

    Article  Google Scholar 

  2. O. K. Moune, Y. Rabinovitch, D. Tetard, M. Pham-Thi, E. Lallier, and M. D. Faucher, Eur. Phys. J. D 19, 275 (2002).

    ADS  Google Scholar 

  3. B. R. Judd, Phys. Rev. 127, 750 (1962).

    ADS  Article  Google Scholar 

  4. G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).

    ADS  Article  Google Scholar 

  5. C. Görller-Walrand and K. Binnemans, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner and L. Eyring (North-Holland, Amsterdam, 1998), Vol. 25.

    Google Scholar 

  6. U. V. Valiev, J. B. Gruber, G. W. Burdick, A. K. Mu-khammadiev, D. Fu, and V. O. Pelenovich, J. Lumin. 145, 393 (2014).

    Article  Google Scholar 

  7. J. D. Axe, J. Chem. Phys. 39, 1154 (1963).

    ADS  Article  Google Scholar 

  8. M. I. Gaiduk, V. F. Zolin, and L. S. Gaigerova, Europium Luminescence Spectra (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  9. A. Kh. Islamov, E. M. Ibragimova, I. A. Khaiitov, R. R. Vil’danov, and M. Z. Amonov, Opt. Spectrosc. 125, 49 (2018).

    ADS  Article  Google Scholar 

  10. U. V. Valiev, J. B. Gruber, and G. W. Burdick, Magnetooptical Spectroscopy of the Rare-Earth Compounds: Development and Application (Sci. Res. Publ., USA, 2012), p. 139.

    Google Scholar 

  11. R. Yu. Rakhimov, U. V. Valiev, G. W. Burdick, R. R. Vil-danov, and D. Fu, J. Lumin. 207, 339 (2019).

    Article  Google Scholar 

  12. V. S. Zapasskii and P. P. Feofikov, Sov. Phys. Usp. 18, 323 (1975).

    ADS  Article  Google Scholar 

  13. F. S. Richardson and J. P. Riehl, Chem. Rev. 77, 773 (1977).

    Article  Google Scholar 

  14. A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and A. I. Popov, Earth Ions in Magnetically Ordered Crystals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  15. U. V. Valiev, J. B. Gruber, B. Zandi, U. R. Rustamov, A. S. Rakhmatov, D. R. Dzhuraev, and N. M. Narzullaev, Phys. Status Solidi B 242, 933 (2005).

    ADS  Article  Google Scholar 

  16. U. V. Valiev, Sh. A. Rakhimov, N. I. Juraeva, R. A. Rupp, L. Zhao, Zh. Wang, Zh. Zhai, J. B. Gruber, and G. W. Burdick, Phys. Status Solidi B 247, 163 (2010).

    ADS  Article  Google Scholar 

  17. J. P. Riehl and F. S. Richardson, J. Chem. Phys. 65, 1011 (1976).

    ADS  Article  Google Scholar 

  18. U. V. Valiev, J. B. Gruber, I. A. Ivanov, G. W. Burdick, H. Liang, L. Zhou, D. Fu, O. V. Pelenovich, V. O. Pelenovich, and Zh. Lin, Opt. Mater. 46, 282 (2015).

    ADS  Article  Google Scholar 

Download references

FUNDING

This study was supported by the Project of the National Natural Science Foundation (no. 11875210), Project on innovative technologies of the Hubei province (grant no. 2016AHB004), and the State Scientific project of Republic Uzbekistan (grant no. OT-F2-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. V. Valiev.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valiev, U.V., Burdick, G.W., Vildanov, R.R. et al. Effect of the JJ Interaction of Excited States of the Rare-Earth Ion Pr3+ on Magnetically Polarized Luminescence of Praseodymium-Yttrium Aluminum Garnet. Phys. Solid State 61, 735–741 (2019). https://doi.org/10.1134/S1063783419050378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419050378