Skip to main content
Log in

Optical Properties of a Nanocrystalline Co-Doped TiO2 after Various Treatments

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The absorption spectra of cobalt-doped anatase TiO2 nanopowders in the infrared and visible ranges have been studied after various oxidative and reductive treatments. The annealing leads to the appearance of the Drude-like contribution in the infrared region and significant change in the absorption in an visible range due to the formation of defects of the oxygen-vacancy-type and Ti3+ ions. The observed additional contribution in the absorption spectra of TiO2:Co nanopowders as compared to the spectra of undoped powders is ascribed to the dd transitions in ions Co2+. The change in the absorption related to cobalt after annealing is explained by a change in the local environment of Co ions from the octahedral to the tetrahedral environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Pascual, J. Camassel, and H. Mathieu, Phys. Rev. B 18, 5606 (1978).

    Article  ADS  Google Scholar 

  2. H. Tang, F. L’evy, H. Berger, and P. E. Schmid, Phys. Rev. B 52, 7771 (1995).

    Article  ADS  Google Scholar 

  3. V. N. Bogomolov, E. K. Kudinov, D. N. Mirlin, and Y. A. Firsov, Sov. Phys. Solid State 9, 1630 (1967).

    Google Scholar 

  4. Sh. M. Gupta and M. Tripathi, Chin. Sci. Bull. 56, 1639 (2011).

    Article  Google Scholar 

  5. Environmentally Benign Photocatalysts: Applications of Titanium Oxide-based Materials, Ed. by M. Anpo and P. V. Kamat (Springer, New York, 2010).

    Google Scholar 

  6. X. Hu, G. Li, and J. C. Yu, Langmuir 26, 3031 (2010).

    Article  Google Scholar 

  7. X. Chen, Chin. J. Catal. 30, 839 (2009).

    Article  ADS  Google Scholar 

  8. V. N. Kuznetsov and N. Serpone, J. Phys. Chem. C 113, 15110 (2009).

    Article  Google Scholar 

  9. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science (Washington, DC, U. S.) 291, 854 (2001).

    Article  ADS  Google Scholar 

  10. A. Ye. Yermakov, G. S. Zakharova, M. A. Uimin, M. V. Kuznetsov, L. S. Molochnikov, S. F. Konev, A. S. Konev, A. S. Minin, V. V. Mesilov, V. R. Galakhov, A. S. Volegov, A. V. Korolyov, A. F. Gubkin, A. M. Murzakayev, A. D. Svyazhin, and K. V. Melanin, J. Phys. Chem. C 120, 28857 (2016).

    Article  Google Scholar 

  11. S. A. Ahmed, J. Magn. Magn. Mater. 442, 152 (2017).

    Article  ADS  Google Scholar 

  12. B. Santara, B. Pal, and P. K. Giri, J. Appl. Phys. 110, 114322 (2011).

    Article  ADS  Google Scholar 

  13. A. N. Morozovska, E. A. Eliseev, M. D. Glinchuk, and R. Blinc, Phys. B (Amsterdam, Neth.) 406, 1673 (2011).

  14. A. Fabre, S. Salameh, L. C. Ciacchi, M. T. Kreutzer, and J. R. van Ommen, J. Nanopart. Res. 18, 200 (2016).

    Article  ADS  Google Scholar 

  15. Th. S. Krasienapiba, T. Fukumura, and T. Hasegawa, AIP Adv. 6, 055802 (2016).

    Article  ADS  Google Scholar 

  16. O. Yildirim, S. Cornelius, A. Smekhova, G. Zykov, E. A. Gan’shina, A. B. Granovsky, R. Hubner, C. Bahtz, and K. Potzger, J. Appl. Phys. 117, 183901 (2015).

    Article  ADS  Google Scholar 

  17. V. V. Mesilov, V. R. Galakhov, A. F. Gubkin, E. A. Sherstobitova, G. S. Zakharova, M. A. Uimin, A. Ye. Yermakov, K. O. Kvashnina, and D. A. Smirnov, J. Phys. Chem. C 121, 24235 (2017).

    Article  Google Scholar 

  18. R. J. Gonzalez, R. Zallen, and H. Berger, Phys. Rev. B 55, 7014 (1997).

    Article  ADS  Google Scholar 

  19. M. Grujic-Brojcin, M. J. Scepanovic, Z. D. Dohcevic-Mitrovic, I. Hinic, B. Matovic, G. Stanisic, and Z. V. Popovic, J. Phys. D 38, 1415 (2005).

    Article  ADS  Google Scholar 

  20. Ch. Yan, W. Yi, H. Yuan, X. Wu, and F. Li, Environ. Prog. Sustainable Energy 33, 419 (2014).

    Article  Google Scholar 

  21. J. A. Wang, R. Limas-Ballesteros, T. Lopez, A. Moreno, R. Gomez, O. Novaro, and X. Bokhimi, J. Phys. Chem. B 105, 9692 (2001).

    Article  Google Scholar 

  22. Y. Gao, Y. Masuda, W.-S. Seo, H. Ohta, and K. Koumoto, Ceram. Int. 30, 1365 (2004).

    Article  Google Scholar 

  23. T. Prakash, M. Navaneethan, J. Archana, S. Ponnusamy, C. Muthamizhchelvan, and Y. Hayakawa, J. Mater. Sci. 5, 43 (2017).

    Google Scholar 

  24. C. A. Triana, C. G. Granqvist, and G. A. Niklasson, J. Appl. Phys. 119, 015701 (2016).

    Article  ADS  Google Scholar 

  25. N. A. Deskins and M. Dupuis, Phys. Rev. B 75, 195212 (2007).

    Article  ADS  Google Scholar 

  26. P. Deak, B. Aradi, and T. Frauenheim, Phys. Rev. B 86, 195206 (2012).

    Article  ADS  Google Scholar 

  27. S. K. Park and H. Shin, J. Nanosci. Nanotechnol. 14, 8122 (2014).

    Article  MathSciNet  Google Scholar 

  28. J. Soria, J. Sanz, M. J. Torralvo, I. Sobrados, C. Garlisi, G. Palmisano, S. Cetinkaya, and S. V. Yurdakal, Appl. Catal. B 210, 306 (2017).

    Article  Google Scholar 

  29. Z. P. Tshabalala, D. E. Motaung, G. H. Mhlongo, and O. M. Ntwaeaborwa, Sens. Actuators, B 224, 841 (2016).

    Article  Google Scholar 

  30. B. Babu, Ch. Rama Krishna, Ch. Venkata Reddy, V. Pushpa Manjari, and R. V. S. S. N. Ravikuma, Spectrochim. Acta, A 109, 90 (2013).

    Article  ADS  Google Scholar 

  31. A. H. Farha, Sh. A. Mansour, and M. F. Kotkata, J. Mater. Sci. 51, 9855 (2016).

    Article  ADS  Google Scholar 

  32. H. A. Weakliem, J. Chem. Phys. 36, 2117 (1962).

    Article  ADS  Google Scholar 

  33. S. Jensen and D. Kilin, Mol. Phys. 114, 469 (2015).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to G.S. Zakharova for the synthesis of the nanopowders.

Funding

This work was carried out within the state assignment of Minobrnauki of Russia (theme Spin, no. AAAA-A18-118020290104-2) and supported in part by the program of the Ural Branch of RAS (project 18-10-2-37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Mostovshchikova.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostovshchikova, E.V., Yermakov, A.Y., Uimin, M.A. et al. Optical Properties of a Nanocrystalline Co-Doped TiO2 after Various Treatments. Phys. Solid State 61, 901–907 (2019). https://doi.org/10.1134/S1063783419050202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419050202

Navigation