Skip to main content
Log in

An ab-initio Investigation: The Physical Properties of ScIr2 Superconductor

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using ab initio technique the physical properties of ScIr2 superconductor have been investigated with Tc 1.03 K with a MgCu2-type structure. We have carried out the plane-wave pseudopotential approach within the framework of the first-principles density functional theory (DFT) implemented within the CASTEP code. The calculated structural parameters confirm a good agreement with the experimental and other theoretical results. Using the Voigt-Reuss-Hill (VRH) averaging scheme the most important elastic properties including the bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν of ScIr2 are determined. At ambient condition, the values of Cauchy pressure and Pugh’s ratio exhibit ductile nature of ScIr2. The electronic and optical properties of ScIr2 were investigated for the first time. The electronic band structure reveals metallic conductivity and the major contribution comes from Ir-5d states. In the ultraviolet region the reflectivity is high up to 50 eV as evident from the reflectivity spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ö. Rapp, J. Invarsson, and T. Claeson, Phys. Lett. A 50, 159 (1974).

    Article  ADS  Google Scholar 

  2. E. Deligoz, K. Colakoglu, H. Ozisik, and Y. O. Cifti, Comput. Mater. Sci. 68, 27 (2013).

    Article  Google Scholar 

  3. E. Deligoz, H. Ozisik, and K. Colakoglu, Philos. Mag. 94, 1379 (2014).

    Article  ADS  Google Scholar 

  4. A. Zh. Tuleushev, V. N. Volodin, and Yu. Zh. Tuleushev, JETP Lett. 78, 440 (2003).

    Article  ADS  Google Scholar 

  5. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, Z. Krist. 220, 567 (2005).

  6. Materials Studio CASTEP Manual (Accelrys, 2010), p. 261. www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.html.

  7. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  Google Scholar 

  8. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vyd-rov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  9. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vyd-rov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  10. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  11. B. G. Pfrommer, M. Cote, S. G. Louie, and M. L. Co-hen, J. Comput. Phys. 131, 233 (1997).

    Article  ADS  Google Scholar 

  12. J. Kang, E. C. Lee, and K. J. Chang, Phys. Rev. B 68, 054106 (2003).

    Article  ADS  Google Scholar 

  13. D. E. Sands, A. Zalkin, and O. H. Krikorian, Acta Crystallogr. 12, 461 (1959).

    Article  Google Scholar 

  14. J. Y. Wang and Y. C. Zhou, Phys. Rev. B 69, 214111 (2004).

    Article  ADS  Google Scholar 

  15. J. F. Nye, Proprie’te s Physiques des Mate’riaux (Dunod, Paris, 1961).

    Google Scholar 

  16. R. Hill, Proc. Phys. Soc., Ser. A 65, 349 (1952).

    Google Scholar 

  17. Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, and X. J. Liu, Phys. Rev. B 76, 054115 (2007).

    Article  ADS  Google Scholar 

  18. M. Born, in On the Stability of Crystal Lattices. I (Cambridge Univ. Press, Cambridge, 1940), p. 160.

    MATH  Google Scholar 

  19. D. G. Pettiifor, J. Mater. Sci. Technol. 8, 345 (1992).

    Article  Google Scholar 

  20. Yong Liu, Wen-Cheng Hu, De-jiang Li, Xiao-Qin Zeng, Chun-Shui Xu, and Xiang-Jie Yang, Intermetallics 31, 257 (2012).

    Article  Google Scholar 

  21. D. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    Article  Google Scholar 

  22. S. F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  23. Q. J. Liu, Z. T. Liu, L. P. Feng, and H. Tian, Comput. Mater. Sci. 50, 2833 (2011).

    Google Scholar 

  24. M. d. Rahman and M. d. Rahaman, arXiv:1510.02020 (2015).

  25. Y. Cao, J. C. Zhu, Y. Liu, Z. S. Nong, and Z. H. Lai, Comput. Mater. Sci. 69, 40 (2013).

    Article  Google Scholar 

  26. B. G. Pfrommer, M. S. G. Louie, and M. L. Cohen, J. Comput. Phys. 131, 233 (1997).

    Article  ADS  Google Scholar 

  27. C. Zener, Elasticity and Anelasticity of Metals (Univ. Chicago Press, Chicago, 1948).

  28. R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).

    Article  ADS  Google Scholar 

  29. M. D. Segall, R. Shah, C. J. Pickard, and M. C. Payne, Phys. Rev. B 54, 16317 (1996).

    Article  ADS  Google Scholar 

  30. Md. Roknuzzaman and A. K. M. A. Islam, ISRN Condens. Matter Phys. 2013, 646042 (2013).

    Google Scholar 

  31. M. A. Hossain, M. S. Ali, and A. K. M. A. Islam, Eur. Phys. J. B 85, 396 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttam Kumar Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, U.K., Saha, T.C. An ab-initio Investigation: The Physical Properties of ScIr2 Superconductor. Phys. Solid State 61, 530–536 (2019). https://doi.org/10.1134/S1063783419040310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419040310

Navigation