Skip to main content
Log in

C20 Carbinofullerene Chains

  • ATOMIC CLUSTERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of computer simulation of a new one-dimensional carbon structure representing chains composed of C20 carbinofullerenes are presented. Their binding energies are determined. Their thermal stability is studied by the method of molecular dynamics. The resistance of chains to stretching is also studied. It is shown that breaking the bond between adjacent carbinofullerene moieties in the chain is a preferred channel for thermal and deformational destruction. The ultimate strains of chains and also the temperature dependence of their lifetime until the time of decay are determined. Using different approaches, the activation energy values and the frequency factors of the decay process in the Arrhenius law are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London, U.K.) 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. A. D. Boese and G. E. Scuseria, Chem. Phys. Lett. 294, 233 (1998).

    Article  ADS  Google Scholar 

  3. G. Sánches, S. Días-Tendero, M. Alcamí, and F. Mar-tín, Chem. Phys. Lett. 416, 14 (2005).

    Article  ADS  Google Scholar 

  4. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature (London, U.K.) 347, 354 (1990).

    Article  ADS  Google Scholar 

  5. A. V. Eletskii and B. M. Smirnov, Phys. Usp. 38, 935 (1995).

    Article  ADS  Google Scholar 

  6. A. A. Farajian and M. Mikami, J. Phys.: Condens. Matter 13, 8049 (2001).

    ADS  Google Scholar 

  7. K. S. Grishakov, K. P. Katin, and M. M. Maslov, Diamond Relat. Mater. 84, 112 (2018).

    Article  ADS  Google Scholar 

  8. R. Ehlich, P. Landenberger, and H. Prinzbach, J. Chem. Phys. 115, 5830 (2001).

    Article  ADS  Google Scholar 

  9. Y. Miyamoto and M. Saito, Phys. Rev. B 63, 161401 (2001).

    Article  ADS  Google Scholar 

  10. L. A. Openov, I. V. Davydov, and A. I. Podlivaev, JETP Lett. 85, 339 (2007).

    Article  ADS  Google Scholar 

  11. T. Yildirim, P. M. Gehring, D. A. Neumann, P. E. Eaton, and T. Emrick, Phys. Rev. Lett. 78, 4938 (1997).

    Article  ADS  Google Scholar 

  12. M. M. Maslov, K. P. Katin, A. I. Avkhadieva, and A. I. Podlivaev, Russ. J. Phys. Chem. B 8, 152 (2014).

    Article  Google Scholar 

  13. K. P. Katin and M. M. Maslov, Adv. Condens. Matter Phys. 2015, 754873 (2015).

    Article  Google Scholar 

  14. E. A. Belenkov and I. V. Shakhova, Phys. Solid State 53, 2385 (2011).

    Article  ADS  Google Scholar 

  15. A. I. Podlivaev and L. A. Openov, Phys. Solid State 61, 475 (2019).

  16. E. M. Pearson, T. Halicioglu, and W. A. Tiller, Phys. Rev. A 32, 3030 (1985).

    Article  ADS  Google Scholar 

  17. C. Xu and G. E. Scuseria, Phys. Rev. Lett. 72, 669 (1994).

    Article  ADS  Google Scholar 

  18. J. Jellinek and A. Goldberg, J. Chem. Phys. 113, 2570 (2000).

    Article  ADS  Google Scholar 

  19. C. E. Klots, Z. Phys. D 20, 105 (1991).

    Article  ADS  Google Scholar 

  20. J. V. Andersen, E. Bonderup, and K. Hansen, J. Chem. Phys. 114, 6518 (2001).

    Article  ADS  Google Scholar 

  21. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).

    Article  Google Scholar 

  22. L. A. Openov and A. I. Podlivaev, Phys. Solid State 59, 1267 (2017).

    Article  ADS  Google Scholar 

  23. A. I. Podlivaev and L. A. Openov, Phys. Solid State 60, 162 (2018).

    Article  ADS  Google Scholar 

  24. L. A. Openov and A. I. Podlivaev, Phys. Solid State 60, 799 (2018).

    Article  ADS  Google Scholar 

  25. G. V. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Article  ADS  Google Scholar 

  26. A. I. Podlivaev and L. A. Openov, Phys. Solid State 48, 2226 (2006).

    Article  ADS  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Foundation for Basic Research, grant no. 18-02-00278-a, and the Ministry of Science and Higher Education of the Russian Federation within the Program for competitive growth of the National Research Nuclear University MIFI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Podlivaev.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I., Openov, L.A. C20 Carbinofullerene Chains. Phys. Solid State 61, 680–685 (2019). https://doi.org/10.1134/S1063783419040218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419040218

Navigation