Variation of a Defect Structure of Lithium Tetraborate (Li2B4O7) in an External Electric Field

Abstract

The variation of a defect structure of a lithium tetraborate single crystal under the influence of a high-strength external electric field applied along polar direction [001] has been studied by the X-ray diffraction (XDR) method. The conductivity kinetics has been measured; it is found to agree with changes in the diffraction peak parameters. Application of the electric field with the strength of 300–500 V/mm leads to a sharp broadening of the rocking curve and the increase in the integral intensity by several times, but the curve position and shape are only slightly changed. At higher electric fields from 500 to 1500 V/mm, the process of broadening the curve slows down; however, the shape asymmetry appears and the peak shifts to smaller angles, which is due to an increase in the lattice parameter along axis c. In this case, the changes become irreversible, since the distorted structure is partially recovered with a very low rate (for several months). Two types of the dependences of the rocking curves parameters variation under an external field are interpreted as the manifestation of two mechanisms of the ionic conduction due to mobile lithium (Li+) ions at low fields and oxygen vacancies (\({\text{V}}_{{\text{O}}}^{{2 + }}\)) at higher fields. The charge carrier migration leads to an increase in the defect concentration and structural changes in a near-surface crystal region. The obtained results have practical importance from the point of view of the controlled change in the defect structure in the crystals with ionic conductivity.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    J. D. Garrett, M. Natarajan-Iyer, and J. E. Greedan, J. Cryst. Growth 41, 225 (1977).

    ADS  Article  Google Scholar 

  2. 2

    D. Robertson and I. Young, J. Mater. Sci. 17, 1729 (1982).

    ADS  Article  Google Scholar 

  3. 3

    R. Mohandoss, S. Dhanuskodi, B. Renganathan, and D. Sastikumar, Curr. Appl. Phys. 13, 957 (2013).

    ADS  Article  Google Scholar 

  4. 4

    I. Ketsman, D. Wooten, J. Xiao, Ya. B. Losovyj, Ya. V. Bu-rak, V. T. Adamiv, A. Sokolov, J. Petrosky, J. McClory, and P. A. Dowben, Phys. Lett. A 374, 891 (2010).

    ADS  Article  Google Scholar 

  5. 5

    J. H. Schulman, R. D. Kirk, and E. J. West, in Proceedings of International Conference on Luminescence Dosimetry, Stanford Univ., Stanford, CA, 1965 (1967), p. 113.

  6. 6

    S. Furusawa, O. Chikagawa, S. Tange, T. Ishidate, H. Orihara, Y. Ishibashi, and K. Miwa, J. Phys. Soc. Jpn. 60, 2691 (1991).

    ADS  Article  Google Scholar 

  7. 7

    R. Komatsu, T. Sugawara, K. Sassa, N. Sarukura, Z. Liu, S. Izumida, Y. Segawa, S. Uda, T. Fukuda, and K. Yamanouchi, Appl. Phys. Lett. 70, 3492 (1997).

    ADS  Article  Google Scholar 

  8. 8

    A. S. Bhalla, L. E. Cross, and R. W. Whatmore, Jpn. J. Appl. Phys. 24, 727 (1985).

    Article  Google Scholar 

  9. 9

    R. W. Whatmore, N. M. Shorrocks, C. O’Hara, F. W. Ainger, and I. W. Young, Electron. Lett. 17, 11 (1981).

    ADS  Article  Google Scholar 

  10. 10

    C. V. Radaev, L. A. Muradyan, L. F. Malakhova, Ya. V. Burak, and V. I. Simonov, Sov. Phys. Crystallogr. 34, 842 (1989).

    Google Scholar 

  11. 11

    A. E. Aliev, Ya. V. Burak, and I. T. Lyseiko, Izv. Akad. Nauk SSSR, Neorg. Mater. 26, 1991 (1990).

    Google Scholar 

  12. 12

    I. M. Rizak, V. M. Rizak, N. D. Baisa, V. S. Bilanich, M. V. Boguslavskii, S. Yu. Stefanovich, and V. M. Go-lovei, Crystallogr. Rep. 48, 676 (2003).

    ADS  Article  Google Scholar 

  13. 13

    C. S. Kim, D. J. Kim, Y. H. Hwang, H. K. Kim, and J. N. Kim, J. Appl. Phys. 92, 4644 (2002).

    ADS  Article  Google Scholar 

  14. 14

    C. S. Kim, Y. H. Hwang, H. K. Kim, and J. N. Kim, Phys. Chem. Glass. 44, 166 (2003).

    Google Scholar 

  15. 15

    M. M. Islam, T. Bredow, and C. Minot, J. Phys. Chem. B 110, 17518 (2006).

    Article  Google Scholar 

  16. 16

    S. Furusawa, S. Tange, Y. Ishibashi, and K. Miwa, J. Phys. Soc. Jpn. 59, 2532 (1990).

    ADS  Article  Google Scholar 

  17. 17

    M. V. Koval’chuk, A. E. Blagov, A. G. Kulikov, N. V. Marchenkov, and Yu. V. Pisarevsky, Crystallogr. Rep. 59, 862 (2014).

    ADS  Article  Google Scholar 

  18. 18

    A. G. Kulikov, A. E. Blagov, N. V. Marchenkov, V. A. Lomonov, A. V. Vinogradov, Yu. V. Pisarevskii, and M. V. Kovalchuk, JETP Lett. 107, 646 (2018).

    ADS  Article  Google Scholar 

  19. 19

    J. Hanzig, M. Zschornak, F. Hanzig, E. Mehner, and H. Stocker, Phys. Rev. B 88, 024104 (2013).

    ADS  Article  Google Scholar 

  20. 20

    A. E. Blagov, N. V. Marchenkov, Yu. V. Pisarevsky, P. A. Prosekov, and M. V. Kovalchuk, Crystallogr. Rep. 58, 49 (2013).

    ADS  Article  Google Scholar 

  21. 21

    A. E. Blagov, A. G. Kulikov, N. V. Marchenkov, Y. V. Pisarevsky, and M. V. Kovalchuk, Exp. Tech. 41, 517 (2017).

    Article  Google Scholar 

  22. 22

    A. E. Blagov, Yu. V. Pisarevskii, A. V. Targonskii, Ya. A. Eliovich, and M. V. Koval’chuk, Phys. Solid State 59, 973 (2017).

    ADS  Article  Google Scholar 

  23. 23

    N. V. Marchenkov, F. N. Chukhovskii, and A. E. Blagov, Crystallogr. Rep. 60, 172 (2015).

    ADS  Article  Google Scholar 

  24. 24

    I. I. Atknin, N. V. Marchenkov, F. N. Chukhovskii, A. E. Blagov, and M. V. Koval’chuk, Crystallogr. Rep. 63, 521 (2018).

    ADS  Article  Google Scholar 

  25. 25

    V. V. Zaretskii and Ya. V. Burak, JETP Lett. 49, 229 (1989).

    ADS  Google Scholar 

  26. 26

    V. N. Anisimova, A. P. Levanyuk, and E. D. Yakushin, Sov. Phys. Solid State 32, 1253 (1990).

    Google Scholar 

  27. 27

    I. M. Sil’vestrova, P. A. Senyushchenkov, V. A. Lo-monov, and Yu. V. Pisarevskii, Sov. Phys. Solid State 31, 531 (1989).

    Google Scholar 

  28. 28

    E. M. Zub, Phys. Solid State 39, 1297 (1997).

    ADS  Article  Google Scholar 

  29. 29

    N. Sennova, R. S. Bubnova, G. Cordier, B. Albert, S. K. Filatov, and L. Isaenko, Z. Anorg. Allg. Chem. 634, 2601 (2008).

    Article  Google Scholar 

  30. 30

    I. N. Ogorodnikov, N. E. Poryvay, and V. A. Pustovarov, IOP Conf. Ser.: Mater. Sci. Eng. 15, 012016 (2010).

Download references

FUNDING

This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC Crystallography and Photonics RAS in part of crystal growth, sample preparation and numerical simulation and by the Russian Foundation for Basic Research (project 16-29-14057 ofi_m) in part of research under the influence of an electric field.

ACKNOWLEDGMENTS

The authors are grateful to Dr. A. S. Ilyin and Dr. P. A. Forsh of the Department of Molecular Electronics at Moscow State University for their help in the performance of the electrophysical measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. G. Kulikov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulikov, A.G., Pisarevskii, Y.V., Blagov, A.E. et al. Variation of a Defect Structure of Lithium Tetraborate (Li2B4O7) in an External Electric Field. Phys. Solid State 61, 548–554 (2019). https://doi.org/10.1134/S1063783419040188

Download citation