Physics of the Solid State

, Volume 61, Issue 4, pp 548–554 | Cite as

Variation of a Defect Structure of Lithium Tetraborate (Li2B4O7) in an External Electric Field

  • A. G. KulikovEmail author
  • Yu. V. Pisarevskii
  • A. E. Blagov
  • N. V. Marchenkov
  • V. A. Lomonov
  • A. A. Petrenko
  • M. V. Kovalchuk


The variation of a defect structure of a lithium tetraborate single crystal under the influence of a high-strength external electric field applied along polar direction [001] has been studied by the X-ray diffraction (XDR) method. The conductivity kinetics has been measured; it is found to agree with changes in the diffraction peak parameters. Application of the electric field with the strength of 300–500 V/mm leads to a sharp broadening of the rocking curve and the increase in the integral intensity by several times, but the curve position and shape are only slightly changed. At higher electric fields from 500 to 1500 V/mm, the process of broadening the curve slows down; however, the shape asymmetry appears and the peak shifts to smaller angles, which is due to an increase in the lattice parameter along axis c. In this case, the changes become irreversible, since the distorted structure is partially recovered with a very low rate (for several months). Two types of the dependences of the rocking curves parameters variation under an external field are interpreted as the manifestation of two mechanisms of the ionic conduction due to mobile lithium (Li+) ions at low fields and oxygen vacancies (\({\text{V}}_{{\text{O}}}^{{2 + }}\)) at higher fields. The charge carrier migration leads to an increase in the defect concentration and structural changes in a near-surface crystal region. The obtained results have practical importance from the point of view of the controlled change in the defect structure in the crystals with ionic conductivity.



This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC Crystallography and Photonics RAS in part of crystal growth, sample preparation and numerical simulation and by the Russian Foundation for Basic Research (project 16-29-14057 ofi_m) in part of research under the influence of an electric field.


The authors are grateful to Dr. A. S. Ilyin and Dr. P. A. Forsh of the Department of Molecular Electronics at Moscow State University for their help in the performance of the electrophysical measurements.


  1. 1.
    J. D. Garrett, M. Natarajan-Iyer, and J. E. Greedan, J. Cryst. Growth 41, 225 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    D. Robertson and I. Young, J. Mater. Sci. 17, 1729 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    R. Mohandoss, S. Dhanuskodi, B. Renganathan, and D. Sastikumar, Curr. Appl. Phys. 13, 957 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    I. Ketsman, D. Wooten, J. Xiao, Ya. B. Losovyj, Ya. V. Bu-rak, V. T. Adamiv, A. Sokolov, J. Petrosky, J. McClory, and P. A. Dowben, Phys. Lett. A 374, 891 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    J. H. Schulman, R. D. Kirk, and E. J. West, in Proceedings of International Conference on Luminescence Dosimetry, Stanford Univ., Stanford, CA, 1965 (1967), p. 113.Google Scholar
  6. 6.
    S. Furusawa, O. Chikagawa, S. Tange, T. Ishidate, H. Orihara, Y. Ishibashi, and K. Miwa, J. Phys. Soc. Jpn. 60, 2691 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    R. Komatsu, T. Sugawara, K. Sassa, N. Sarukura, Z. Liu, S. Izumida, Y. Segawa, S. Uda, T. Fukuda, and K. Yamanouchi, Appl. Phys. Lett. 70, 3492 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    A. S. Bhalla, L. E. Cross, and R. W. Whatmore, Jpn. J. Appl. Phys. 24, 727 (1985).CrossRefGoogle Scholar
  9. 9.
    R. W. Whatmore, N. M. Shorrocks, C. O’Hara, F. W. Ainger, and I. W. Young, Electron. Lett. 17, 11 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    C. V. Radaev, L. A. Muradyan, L. F. Malakhova, Ya. V. Burak, and V. I. Simonov, Sov. Phys. Crystallogr. 34, 842 (1989).Google Scholar
  11. 11.
    A. E. Aliev, Ya. V. Burak, and I. T. Lyseiko, Izv. Akad. Nauk SSSR, Neorg. Mater. 26, 1991 (1990).Google Scholar
  12. 12.
    I. M. Rizak, V. M. Rizak, N. D. Baisa, V. S. Bilanich, M. V. Boguslavskii, S. Yu. Stefanovich, and V. M. Go-lovei, Crystallogr. Rep. 48, 676 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    C. S. Kim, D. J. Kim, Y. H. Hwang, H. K. Kim, and J. N. Kim, J. Appl. Phys. 92, 4644 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    C. S. Kim, Y. H. Hwang, H. K. Kim, and J. N. Kim, Phys. Chem. Glass. 44, 166 (2003).Google Scholar
  15. 15.
    M. M. Islam, T. Bredow, and C. Minot, J. Phys. Chem. B 110, 17518 (2006).CrossRefGoogle Scholar
  16. 16.
    S. Furusawa, S. Tange, Y. Ishibashi, and K. Miwa, J. Phys. Soc. Jpn. 59, 2532 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    M. V. Koval’chuk, A. E. Blagov, A. G. Kulikov, N. V. Marchenkov, and Yu. V. Pisarevsky, Crystallogr. Rep. 59, 862 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    A. G. Kulikov, A. E. Blagov, N. V. Marchenkov, V. A. Lomonov, A. V. Vinogradov, Yu. V. Pisarevskii, and M. V. Kovalchuk, JETP Lett. 107, 646 (2018).ADSCrossRefGoogle Scholar
  19. 19.
    J. Hanzig, M. Zschornak, F. Hanzig, E. Mehner, and H. Stocker, Phys. Rev. B 88, 024104 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    A. E. Blagov, N. V. Marchenkov, Yu. V. Pisarevsky, P. A. Prosekov, and M. V. Kovalchuk, Crystallogr. Rep. 58, 49 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    A. E. Blagov, A. G. Kulikov, N. V. Marchenkov, Y. V. Pisarevsky, and M. V. Kovalchuk, Exp. Tech. 41, 517 (2017).CrossRefGoogle Scholar
  22. 22.
    A. E. Blagov, Yu. V. Pisarevskii, A. V. Targonskii, Ya. A. Eliovich, and M. V. Koval’chuk, Phys. Solid State 59, 973 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    N. V. Marchenkov, F. N. Chukhovskii, and A. E. Blagov, Crystallogr. Rep. 60, 172 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    I. I. Atknin, N. V. Marchenkov, F. N. Chukhovskii, A. E. Blagov, and M. V. Koval’chuk, Crystallogr. Rep. 63, 521 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    V. V. Zaretskii and Ya. V. Burak, JETP Lett. 49, 229 (1989).ADSGoogle Scholar
  26. 26.
    V. N. Anisimova, A. P. Levanyuk, and E. D. Yakushin, Sov. Phys. Solid State 32, 1253 (1990).Google Scholar
  27. 27.
    I. M. Sil’vestrova, P. A. Senyushchenkov, V. A. Lo-monov, and Yu. V. Pisarevskii, Sov. Phys. Solid State 31, 531 (1989).Google Scholar
  28. 28.
    E. M. Zub, Phys. Solid State 39, 1297 (1997).ADSCrossRefGoogle Scholar
  29. 29.
    N. Sennova, R. S. Bubnova, G. Cordier, B. Albert, S. K. Filatov, and L. Isaenko, Z. Anorg. Allg. Chem. 634, 2601 (2008).CrossRefGoogle Scholar
  30. 30.
    I. N. Ogorodnikov, N. E. Poryvay, and V. A. Pustovarov, IOP Conf. Ser.: Mater. Sci. Eng. 15, 012016 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. G. Kulikov
    • 1
    • 2
    Email author
  • Yu. V. Pisarevskii
    • 1
    • 2
  • A. E. Blagov
    • 1
    • 2
  • N. V. Marchenkov
    • 1
    • 2
  • V. A. Lomonov
    • 1
  • A. A. Petrenko
    • 1
    • 2
  • M. V. Kovalchuk
    • 1
    • 2
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of SciencesMoscowRussia
  2. 2.National Research Centre Kurchatov InstituteMoscowRussia

Personalised recommendations