Skip to main content
Log in

Monodispersed Spherical Nanoparticles GdxSiyOz:Eu3+ for Magnetic Resonance Tomography and Optical Imaging

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The melt method is used for synthesizing monodispersed spherical silica nanoparticles Gdx-SiyOz:Eu3+. The particle diameter is 450 nm, and the standard deviation does not exceed 5%. The nanoparticles have a line luminescence spectrum with a dominant band at 614 nm. The effect of a constant magnetic field up to 15 T on the intensity and shape of the luminescence spectra of Eu3+ ions is studied. It is shown that the obtained material has a stable photoluminescence, the intensity of which does not depend on the magnetic field in the entire studied range. The synthesized nanoparticles GdxSiyOz : Eu3+ are promising for use as a contrast agent for magnetic resonance tomography and luminescent marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Z. R. Stephen, F. M. Kievit, and M. Zhang, Mater. Today 14, 330 (2011).

    Article  Google Scholar 

  2. Z. Zhou and Z.-R. Lu, Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 5, 1 (2013).

    Article  Google Scholar 

  3. H. U. Ahmed, A. Kirkham, M. Arya, R. Illing, A. Freeman, C. Allen, and M. Emberton, Nat. Rev. Clin. Oncol. 6, 197 (2009).

    Article  Google Scholar 

  4. P. Caravan, Chem. Soc. Rev. 35, 512 (2006).

    Article  Google Scholar 

  5. S. E. Cowper, H. S. Robin, S. M. Steinberg, L. D. Su, S. Gupta, and P. E. le Boit, Lancet 356, 1000 (2000).

    Article  Google Scholar 

  6. P. Marckmann, L. Skov, K. Rossen, A. Dupont, M. B. Damholt, J. G. Heaf, and H. S. Thomsen, J. Am. Soc. Nephrol. 17, 2359 (2006).

    Article  Google Scholar 

  7. M. Rogosnitzky and S. Branch, Biometals 29, 365 (2016).

    Article  Google Scholar 

  8. M. A. Sieber, P. Lengsfeld, T. Frenzel, S. Golfier, H. Schmitt-Willich, F. Siegmund, J. Walter, H.‑J. Weinmann, and H. Pietsch, Eur. Radiol. 18, 2164 (2008).

    Article  Google Scholar 

  9. A. Hedlund, M. Ahrén, H. Gustafsson, N. Abrikossova, M. Warntjes, J.-I. Jönsson, K. Uvdal, and M. Engström, Int. J. Nanomed. 6, 3233 (2011).

    Google Scholar 

  10. G. H. Lee, Y. Chang, and T.-J. Kim, Eur. J. Inorg. Chem. 2012, 1924 (2012).

    Article  Google Scholar 

  11. H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang, Biomaterials 32, 2979 (2011).

    Article  Google Scholar 

  12. D.-E. Lee, H. Koo, I. C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon, Chem. Soc. Rev. 41, 2656 (2012).

    Article  Google Scholar 

  13. D. J. Irvine, Nat. Mater. 10, 342 (2011).

    Article  ADS  Google Scholar 

  14. C.-H. Huang and A. Tsourkas, Curr. Top. Med. Chem. 13, 411 (2013).

    Article  Google Scholar 

  15. X. Tian, F. Yang, C. Yang, Y. Peng, D. Chen, J. Zhu, F. He, L. Li, and X. Chen, Int. J. Nanomed. 9, 4043 (2014).

    Article  Google Scholar 

  16. J. Jung, M. A. Kim, J.-H. Cho, S. J. Lee, I. Yang, J. Cho, S. K. Kim, C. Lee, and J. K. Park, Biomaterials 33, 5865 (2012).

    Article  Google Scholar 

  17. K. Binnemans, Chem. Rev. 109, 4283 (2009).

    Article  Google Scholar 

  18. J. C. G. Bünzli, Chem. Rev. 110, 2729 (2010).

    Article  Google Scholar 

  19. C. P. Montgomery, B. S. Murray, E. J. New, R. Pal, and D. Parker, Acc. Chem. Res. 42, 925 (2009).

    Article  Google Scholar 

  20. N. M. K. Tse, D. F. Kennedy, N. Kirby, B. A. Moffat, B. W. Muir, R. A. Caruso, and C. J. Drummond, Adv. Healthcare Mater. 2, 836 (2013).

    Article  Google Scholar 

  21. Y. Parganihaa, J. Kaura, N. Dubeya, V. Dubeyb, R. Shrivastavac, S. J. Dhobled, and H. C. Swart, Ceram. Int. 43, 9084 (2017).

    Article  Google Scholar 

  22. S. L. Pinho, H. Faneca, C. F. Geraldes, M. H. Delville, L. D. Carlos, and J. Rocha, Biomaterials 33, 925 (2012).

    Google Scholar 

  23. W. Jiang, J. Zhang, W. Chen, P. Chen, J. Han, B. Xu, S. Zheng, Q. Guo, X. Liu, and J. Qiu, J. Appl. Phys. 116, 123103 (2014).

    Article  ADS  Google Scholar 

  24. Y. Zhang, Q. Xiao, H. He, J. Zhang, G. Dong, J. Han, and J. Qiu, J. Mater. Chem. C 3, 10140 (2015).

    Article  Google Scholar 

  25. P. Chen, H. Jia, J. Zhang, J. Han, X. Liu, and J. Qiu, J. Phys. Chem. C 119, 5583 (2015).

    Article  Google Scholar 

  26. C.-C. Huang, W. Huang, C.-H. Su, C.-N. Feng, W.‑S. Kuoa, and C.-S. Yeh, Chem. Commun. 0, 3360 (2009).

    Article  Google Scholar 

  27. E. Yu. Trofimova, D. A. Kurdyukov, Yu. A. Kukushkina, M. A. Yagovkina, and V. G. Golubev, Glass Phys. Chem. 37, 378 (2011).

    Article  Google Scholar 

  28. E. Yu. Trofimova, D. A. Kurdyukov, S. A. Yakovlev, D. A. Kirilenko, Y. A. Kukushkina, A. V. Nashchekin, A. A. Sitnikova, M. A. Yagovkina, and V. G. Golubev, Nanotechnology 24, 155601 (2013).

    Article  ADS  Google Scholar 

  29. D. A. Kurdyukov, D. A. Eurov, D. A. Kirilenko, J. A. Kukushkina, V. V. Sokolov, M. A. Yagovkina, and V. G. Golubev, Micropor. Mesopor. Mater. 223, 225 (2016).

    Article  Google Scholar 

  30. E. Y. Stovpiaga, D. A. Kurdyukov, Y. A. Kukushkina, V. V. Sokolov, and M. A. Yagovkina, Glass Phys. Chem. 41, 316 (2015).

    Article  Google Scholar 

  31. D. A. Eurov, D. A. Kurdyukov, D. A. Kirilenko, J. A. Kukushkina, A. V. Nashchekin, A. N. Smirnov, and V. G. Golubev, J. Nanopart. Res. 17, 82 (2015).

    Article  ADS  Google Scholar 

  32. K. N. Orekhova, D. A. Eurov, D. A. Kurdyukov, V. G. Golubev, D. A. Kirilenko, V. A. Kravets, and M. V. Zamoryanskaya, J. Alloys Compd. 678, 434 (2016).

    Article  Google Scholar 

  33. S. P. Feofilov, A. B. Kulinkin, D. A. Eurov, D. A. Kur-dyukov, and V. G. Golubev, Mater. Res. Express 1, 025019 (2014).

    Article  ADS  Google Scholar 

  34. E. Yu. Stovpiaga, D. A. Eurov, D. A. Kurdyukov, A. N. Smirnov, M. A. Yagovkina, V. Yu. Grigorev, V. V. Romanov, D. R. Yakovlev, and V. G. Golubev, Phys. Solid State 59, 1623 (2017).

    Article  ADS  Google Scholar 

  35. D. A. Eurov, D. A. Kurdyukov, A. V. Medvedev, D. A. Kirilenko, D. R. Yakovlev, and V. G. Golubev, Tech. Phys. Lett. 43, 716 (2017).

    Article  ADS  Google Scholar 

  36. H. Kanithi, D. Blasiak, J. Lajewski, C. Berriaud, P. Ved-rine, and G. Gilgrass, IEEE Trans. Appl. Supercond. 24, 1 (2014).

    Article  Google Scholar 

  37. P. R. Luijten and D. W. J. Klomp, Drug Discov. Today Technol. 8, 103 (2011).

    Article  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Foundation for Basic Research (grant no. 15-52-12011) and the DFG in the framework of ICRC TRR 160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Eurov.

Additional information

Translated by V. A. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eurov, D.A., Kurdyukov, D.A., Shornikova, E.V. et al. Monodispersed Spherical Nanoparticles GdxSiyOz:Eu3+ for Magnetic Resonance Tomography and Optical Imaging. Phys. Solid State 61, 627–631 (2019). https://doi.org/10.1134/S1063783419040103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419040103

Navigation