Skip to main content
Log in

Effect of Heat Treatment on the Dispersion of the Magnetic Anisotropy of MnSb Nanoinclusions Embedded in Thin GaMnSb Films

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We observed a temperature-controlled increase in the magnetic anisotropy and its dispersion in thin GaMnSb films with MnSb nanoinclusions obtained by pulsed laser deposition. The data of transmission electron microscopy indicate that in the samples, a transition of the crystalline structure of magnetic MnSb nanoinclusions from hexagonal (spatial group (sp. gr.) P63/mmc) to cubic (sp. gr. F-43m) takes place. Analysis of the temperature dependences of the magnetic moment m(T), measured using a SQUID magnetometer, obtained for both unannealed and annealed samples cooled in a zero magnetic field and a magnetic field of 10 kOe, indicates that this mechanism is not unique. In unannealed samples, the distribution of the magnetic anisotropy of MnSb nanoinclusions, determined from the dependences of m(T), is unimodal. In the annealed samples, the same dependence becomes multimodal. This means that several thermally activated processes occur in the samples during annealing, resulting in several “populations” of nanoinclusions present in the annealed thin films. The contribution to the increase in the magnetic anisotropy during annealing can result in the structural phase transition, the mismatch of the crystal lattices between MnSb and GaSb, an increase in the average volume of MnSb nanoinclusions, and a change in their stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. Meier and B. P. Zakharchenya, Optical Orientation. Modern Problems in Condensed Matter Science, Ed. by V. M. Agronovich and A. A. Maradudin (Elsevier, North-Holland, Amsterdam, 1984), Vol. 8.

    Google Scholar 

  2. G. A. Prinz, Science (Washington, DC, U. S.) 250, 1092 (1990).

    Article  ADS  Google Scholar 

  3. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science (Washington, DC, U. S.) 287, 1019 (2000).

    Article  ADS  Google Scholar 

  4. V. A. Ivanov, T. G. Aminov, B. M. Novotortsev, and V. T. Kalinnikov, Russ. Chem. Bull. 53, 2357 (2004).

    Article  Google Scholar 

  5. T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).

    Article  ADS  Google Scholar 

  6. S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and T. Dietl, Nat. Mater. 6, 440 (2007).

    Article  ADS  Google Scholar 

  7. T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).

    Article  ADS  Google Scholar 

  8. K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller, Rev. Mod. Phys. 82, 1633 (2010).

    Article  ADS  Google Scholar 

  9. R. B. Morgunov, A. I. Dmitriev, and O. L. Kazakova, Phys. Rev. B 80, 085205 (2009).

    Article  ADS  Google Scholar 

  10. A. I. Dmitriev, R. B. Morgunov, O. L. Kazakova, and J. Tanimoto, J. Exp. Theor. Phys. 108, 985 (2009).

    Article  ADS  Google Scholar 

  11. L. N. Oveshnikov, E. I. Nekhaeva, A. V. Kochura, A. B. Davydov, M. A. Shakhov, S. F. Marenkin, O. A. Novodvorskii, A. P. Kuzmenko, A. L. Vasiliev, B. A. Aronzon, and E. Lahderanta, Beilstein J. Nanotechnol. 9, 2457 (2018).

    Article  Google Scholar 

  12. J. D. Boeck, R. Oesterholt, A. V. Esch, H. Bender, and C. Bruynseraede, Appl. Phys. Lett. 68, 2744 (1996).

    Article  ADS  Google Scholar 

  13. A. Bonanni, A. Navarro-Quezada, T. Li, M. Weg-scheider, Z. Matěj, V. Holý, R. T. Lechner, G. Bauer, M. Rovezzi, F. D’Acapito, M. Kiecana, M. Sawicki, and T. Dietl, Phys. Rev. Lett. 101, 135502 (2008).

    Article  ADS  Google Scholar 

  14. F. Matsukura, E. Abe, and H. Ohno, J. Appl. Phys. 87, 6442 (2000).

    Article  ADS  Google Scholar 

  15. F. Matsukura, E. Abe, Y. Ohno, and H. Ohno, Appl. Surf. Sci. 159–160, 265 (2000).

    Article  Google Scholar 

  16. A. V. Kochura, B. A. Aronzon, K. G. Lisunov, A. V. Lash-kul, A. A. Sidorenko, R. De Renzi, S. F. Marenkin, M. Alam, A. P. Kuzmenko, and E. Lahderanta, J. Appl. Phys. 113, 083905 (2013).

    Article  ADS  Google Scholar 

  17. H. Akinaga, S. Miyanishi, K. Tanaka, W. van Roy, and K. Onodera, Appl. Phys. Lett. 76, 97 (2000).

    Article  ADS  Google Scholar 

  18. H. Shimizu and M. Tanaka, J. Appl. Phys. 89, 7281 (2001).

    Article  ADS  Google Scholar 

  19. Sh. U. Yuldashev, Y. Shon, Y. H. Kwon, D. J. Fu, D. Y. Kim, H. J. Kim, T. W. Kang, and X. Fan, J. Appl. Phys. 90, 3004 (2001).

    Article  ADS  Google Scholar 

  20. R. B. Morgunov, M. Farle, and O. L. Kazakova, J. Exp. Theor. Phys. 107, 113 (2008).

    Article  ADS  Google Scholar 

  21. R. Morgunov, M. Farle, M. Passacantando, L. Ottaviano, and O. Kazakova, Phys. Rev. B 78, 045206 (2008).

    Article  ADS  Google Scholar 

  22. P. N. Hai, S. Ohya, M. Tanaka, S. E. Barnes, and S. Maekawa, Nature (London, U.K.) 458, 489 (2009).

    Article  ADS  Google Scholar 

  23. V. V. Rylkov, B. A. Aronzon, Yu. A. Danilov, Yu. N. Drozdov, V. P. Lesnikov, K. I. Maslakov, and V. V. Podol’skii, J. Exp. Theor. Phys. 100, 742 (2005).

    Article  ADS  Google Scholar 

  24. A. D. Talantsev, O. V. Koplak, and R. B. Morgunov, Phys. Solid State 57, 322 (2015).

    Article  ADS  Google Scholar 

  25. O. V. Koplak, A. A. Polyakov, A. B. Davydov, R. B. Mor-gunov, A. D. Talantsev, A. V. Kochura, I. V. Fedorchenko, O. A. Novodvorskii, L. S. Parshina, O. D. Khra-mova, A. V. Shorokhova, and B. A. Aronzon, J. Exp. Theor. Phys. 120, 1012 (2015).

    Article  ADS  Google Scholar 

  26. A. I. Dmitriev, A. D. Talantsev, O. V. Koplak, and R. Morgunov, J. Appl. Phys. 119, 073905 (2016).

    Article  ADS  Google Scholar 

  27. A. I. Dmitriev and A. A. Filatov, Phys. Solid State 59, 1734 (2017).

    Article  ADS  Google Scholar 

  28. A. I. Dmitriev, A. V. Kochura, A. P. Kuz’menko, L. S. Parshina, O. A. Novodvorskii, O. D. Khramova, E. P. Kochura, A. L. Vasil’ev, and B. A. Aronzon, J. Exp. Theor. Phys. 127, 525 (2018).

    Article  ADS  Google Scholar 

  29. S. F. Marenkin, O. A. Novodvorsky, A. V. Shorokhova, A. B. Davydov, B. A. Aronzon, A. V. Kochura, I. V. Fedorchenko, O. D. Khramova, and A. V. Timofeev, Inorg. Mater. 50, 897 (2014).

    Article  Google Scholar 

  30. A. A. Lotin, O. A. Novodvorsky, L. S. Parshina, E. V. Khaydukov, D. A. Zuev, O. D. Khramova, and V. Ya. Panchenko, Appl. Phys. B 104, 565 (2011).

    Article  ADS  Google Scholar 

  31. H. Zhang, S. S. Kushvaha, S. Chen, X. Gao, D. Qi, A. T. S. Wee, and X.-S. Wang, J. Appl. Phys. 90, 202503 (2007).

    Google Scholar 

  32. M. A. Hettiarachchi, E. Abdelhamid, B. Nadgorny, and S. L. Brock, J. Mater. Chem. C 4, 6790 (2016).

    Article  Google Scholar 

  33. J. D. Aldous, C. W. Burrows, A. M. Sanchez, R. Beanland, I. Maskery, M. K. Breadley, M. D. Dias, J. B. Staunton, and G. R. Bell, Phys. Rev. B 85, 060403 (2012).

    Article  ADS  Google Scholar 

  34. J.-Ch. Zheng and J. W. Davenport, Phys. Rev. B 69, 144415 (2004).

    Article  ADS  Google Scholar 

  35. F. Tournus and A. Tamion, J. Magn. Magn. Mater. 323, 1118 (2011).

    Article  ADS  Google Scholar 

  36. I. J. Bruvera, P. M. Zelis, M. P. Calatayud, G. F. Goya, and F. H. Sanchez, J. Appl. Phys. 118, 184304 (2015).

    Article  ADS  Google Scholar 

  37. V. Seshi Bai and K. V. S. Rama Rao, J. Appl. Phys. 55, 2167 (1984).

    Article  ADS  Google Scholar 

  38. T. Okita and Y. Makino, J. Phys. Soc. Jpn. 25, 120 (1968).

    Article  ADS  Google Scholar 

Download references

FUNDING

This work was supported within the state assignment 007-00160-18-00 using the equipment of the Analytical Center for Collective Use of the Institute of Problems of Chemical Physics, Russian Academy of Sciences, and with the support of the Ministry of Education and Science of the Russian Federation (project no. 16.2814.2017/PCh) and the Russian Foundation for Basic Research (project nos. 17-02-00262 and 15-07-03580). Regarding the deposition of thin GaMnSb films, the work was supported by the Ministry of Science and Higher Education in the framework of the state assignment of the Federal Research Center for Crystallography and Photonics, Russian Academy of Sciences (agreement no. 007-GZ/Ch3363/26).

ACKNOWLEDGMENTS

A.I. Dmitriev is grateful to A.D. Talantsev for his help in research using the SQUID magnetometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dmitriev.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, A.I., Kochura, A.V., Kuz’menko, A.P. et al. Effect of Heat Treatment on the Dispersion of the Magnetic Anisotropy of MnSb Nanoinclusions Embedded in Thin GaMnSb Films. Phys. Solid State 61, 523–529 (2019). https://doi.org/10.1134/S1063783419040073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419040073

Navigation