Skip to main content
Log in

Luminescence Properties of Undoped Langasite Crystals

  • DIELECTRICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The optical and luminescence properties of La3Ga5SiO14 lanthanum–gallium silicate crystals grown in atmospheres of argon and argon with the addition of oxygen are investigated. The results of calculations of the structure of energy bands are presented, obtained using the CASTEP module in the framework of the generalized gradient approximation and the local density approximation. The width of the optical band gap of the crystal is determined to be \(E_{g}^{{{\text{opt}}}}\) = 5.1 eV. Upon interband excitation, La3Ga5SiO14 crystals grown in argon atmosphere show a luminescence band with a maximum at 430 nm, whereas for a crystal grown in argon with addition of oxygen, two luminescence bands with maxima at 470 and 530 nm dominate in the luminescence spectrum. The nature of the luminescence centers responsible for these bands is discussed with the help of the data for electronic structure calculations. The effect of temperature on the luminescent properties of La3Ga5SiO14 is demonstrated. The presence of traps in La3Ga5SiO14 is shown using thermally stimulated luminescence, and their activation energy is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. A. Kaminskii, L. K. Aminov, V. L. Ermolaev, A. A. Konienko, V. B. Kravchenko, B. Z. Malkin, B. V. Mill’, Yu. E. Perlin, A. G. Petrosyan, K. K. Pukhov, V. P. Sakun, S. E. Sarkisov, E. B. Sveshnikova, G. A. Skripko, N. V. Starostin, and A. P. Shkadarevich, Physics and Spectroscopy of Laser Crystals (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  2. A. A. Kaminskii, B. V. Mill, G. G. Khodzhabagyan, A. F. Konstantinova, A. I. Okorochkov, and I. M. Silverstrova, Phys. Status Solidi A 80, 387 (1983).

    Article  ADS  Google Scholar 

  3. A. A. Kaminskii, Phys. Status Solidi A 87, 11 (1985).

    Article  ADS  Google Scholar 

  4. B. V. Grinev, M. F. Dubovik, and A. V. Tolmachev, Optical Single Crystals of Complex Oxide Compounds (Inst. Monokristallov, Khar’kov, 2002) [in Russian].

    Google Scholar 

  5. I. A. Andreev and M. F. Dubovik, Sov. Tech. Phys. Lett. 10, 205 (1984).

    Google Scholar 

  6. H. Fritze, O. Schneider, H. Seh, H. L. Tuller, and G. Borchardt, Phys. Chem. 5, 5207 (2003).

    Google Scholar 

  7. H. Ohsato, T. Iwataki, H. Morikoshi, and K. Kaki-moto, Ceram. Int. 39, S87 (2013).

    Article  Google Scholar 

  8. S. Uda and O. Buzanov, J. Cryst. Growth 211, 318 (2001).

    Article  ADS  Google Scholar 

  9. S. Uda, S. Q. Wang, N. Konishi, H. Inaba, and J. Harada, J. Cryst. Growth 237–239, 707 (2002).

    Article  Google Scholar 

  10. Z. Wang, Y. Yin, and D. Yuan, J. Alloys Compd. 436, 364 (2007).

    Article  Google Scholar 

  11. Z. Wang, D. Yuan, X. Shi, X. Cheng, D. Xu, M. Lv, L. Pan, and S. Guo, J. Cryst. Growth 257, 141 (2003).

    Article  ADS  Google Scholar 

  12. Q. Wang, L. Su, H. Li, L. Zheng, X. Xu, H. Tang, D. Jiang, F. Wu, and J. Xu, Chin. Phys. B 21, 026101 (2012).

    Article  ADS  Google Scholar 

  13. Z. Wang, D. Yuan, X. Shi, X. Cheng, D. Xu, M. Lu, and L. Pan, J. Cryst. Growth 263, 246 (2004).

    Article  ADS  Google Scholar 

  14. S. Georgescu, O. Toma, A. M. Chinie, L. Gheorghe, A. Achim, and A. S. Stefan, Opt. Mater. 30, 1007 (2008).

    Article  ADS  Google Scholar 

  15. Q. Wang, Zh. Wei, J. Liu, Zh. Wang, Zh. Zhang, H. Zhang, and J. Wang, in Proceedings of the Conference on Lasers and Electro-Optics CLEO Pacific Rim, 2013, ThA3-7.

  16. A. A. Kaminskii, Sov. Phys. Dokl. 33, 849 (1988).

    Google Scholar 

  17. X. H. Fu, Y. Che, and Y. L. Li, Solid State Liquid Lasers 21, 995 (2011).

    Google Scholar 

  18. A. A. Kaminskii, G. R. Verdun, B. V. Mill’, and A. V. Butashin, Neorg. Mater. 27, 141 (1992).

    Google Scholar 

  19. L. N. Alyabyeva, V. I. Burkov, and V. A. Kotov, J. Commun. Technol. Electron. 62, 175 (2017).

    Article  Google Scholar 

  20. V. I. Burkov, L. N. Alyab’eva, Yu. V. Denisova, and B. V. Mill’, Inorg. Mater. 50, 1119 (2014).

    Article  Google Scholar 

  21. V. I. Burkov, S. V. Gudenko, and L. N. Alyab’eva, J. Exp. Theor. Phys. 119, 723 (2014).

    Article  ADS  Google Scholar 

  22. P. G. Zverev and G. V. Shilova, in Proceedings of the Laser Physics Workshop 2015, Seminar 5 (2015).

  23. J.-Kh. Lui, Z.-H. Wang, W.-L. Tian, Q. Wang, Z.‑G. Zhang, Z.-Y. Wei, H.-H. Yu, H.-J. Zhang, and J.-Y. Wang, Chin. Phys. Lett. 32, 014206 (2015).

    Article  ADS  Google Scholar 

  24. Y. Futami, T. Yanagida, Yu. Fujimoto, V. Jary, J. Pej-chal, Yu. Yokota, M. Kikuchi, M. Nikl, and A. Yoshikawa, Opt. Mater. 34, 1513 (2012).

    Article  ADS  Google Scholar 

  25. O. A. Buzanov, A. V. Naumov, V. V. Nechaev, and S. N. Knyazev, in Proceedings of the 1996 IEEE International Frequency Control Symposium (1996), p. 131.

  26. N. S. Kozlova, O. A. Buzanov, E. V. Zabelina, A. P. Koz-lova, and M. B. Bykova, Crystallogr. Rep. 61, 275 (2016).

    Article  ADS  Google Scholar 

  27. M. Itoh, S. Takagi, M. Kitaura, M. Fujita, and N. En-do, J. Lumin. 122–123, 205 (2007).

    Article  Google Scholar 

  28. W. Zhang, J. Wang, Zh. Ji, H. Li, Y. Lou, and S. Yao, J. Rare Earths 28, 420 (2010).

    Article  Google Scholar 

  29. Y. Hu, F. Wang, and H. Lin, Mater. Chem. Phys. 107, 82 (2008).

    Article  ADS  Google Scholar 

  30. T. Balasubramanian, B. N. Jensen, S. Urpelainen, B. Sommarin, U. Johansson, M. Huttula, R. Sankari, E. Nõmmiste, S. Aksela, H. Aksela, and R. Nyholm, AIP Conf. Proc. 1234, 661 (2010).

    Article  ADS  Google Scholar 

  31. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr. 220, 567 (2005).

    Google Scholar 

  32. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  33. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 45 (1980).

    Article  Google Scholar 

  34. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  35. M. Kitaura, K. Mochizuki, Y. Inabe, M. Itoh, H. Nakagawa, and S. Oishi, Phys. Rev. B 69, 115120 (2004).

    Article  ADS  Google Scholar 

  36. A. A. Maier, Physical Chemistry of Solid State. Crystal Optics (MKhTI im. Mendeleeva, Moscow, 1984) [in Russian].

  37. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  ADS  Google Scholar 

  38. G. M. Kuz’micheva, I. A. Kaurova, V. B. Rybakov, S. S. Khasanov, A. Cousson, O. Zaharko, E. N. Do-moroshchina, and A. B. Dubovskii, Cryst. Res. Technol. 47, 131 (2012).

    Article  Google Scholar 

  39. E. V. Zabelina, Extended Abstract of Dissertation (Moscow, 2018).

  40. D. A. Spassky, M. G. Brik, N. S. Kozlova, A. P. Koz-lova, E. V. Zabelina, O. A. Buzanov, and A. Belsky, J. Lumin. 177, 152 (2016).

    Article  Google Scholar 

  41. D. A. Spassky, N. S. Kozlova, A. P. Kozlova, E. V. Za-belina, O. A. Buzanov, M. Buryi, V. Laguta, K. Lebbou, A. Nehari, H. Cabane, M. Dumortier, and V. Nagirnyi, J. Lumin. 180, 95 (2016).

    Article  Google Scholar 

  42. R. W. Gurney and N. F. Mott, Trans. Faraday Soc. 35, 69 (1939).

    Article  Google Scholar 

  43. V. V. Mikhailin and A. N. Vasil’ev, Introduction to Solid-State Spectroscopy (Mosk. Gos. Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  44. D. A. Spassky, V. Nagirnyi, V. V. Mikhailin, A. E. Sa-von, A. N. Belsky, V. V. Laguta, M. Buryi, E. N. Ga-lashov, V. N. Shlegel, I. S. Voronina, and B. I. Zadneprovski, Opt. Mater. 35, 2465 (2013).

    Article  ADS  Google Scholar 

  45. J. Ueda, P. Dorenbos, A. J. J. Bos, K. Kuroishi, and S. Tanabe, J. Mater. Chem. C 3, 5642 (2015).

    Article  Google Scholar 

  46. O. Voloshyna, O. Sidletskiy, D. Spassky, Ia. Gerasymov, and A. Belsky, Opt. Mater. 76, 382 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Ministry of Ed-ucation and Science of the Russian Federation in the framework of the State assignment to the University no. 3.2794.2017/PCh, no. 11.5583.2017/ITR (11.5583.2017/7.8), and no. 11.6181.2017/ITR (11.6181.2017/7.8). The optical properties of crystals were studied in the interdepartmental training and testing laboratory of semiconductor materials and dielectrics “Single Crystals and Blanks Based on Them” of the National University of Science and Technology “MISiS.”

The authors are grateful to Prof. M.G. Brik for conducting calculations of the electronic structure. The calculations were carried out using the capabilities of the Wroclaw Center for Networking and Supercomputing (http://www.wcss.pl), grant no. WCSS#10117290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Zabelina.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spasskii, D.A., Kozlova, N.S., Kozlova, A.P. et al. Luminescence Properties of Undoped Langasite Crystals. Phys. Solid State 61, 307–314 (2019). https://doi.org/10.1134/S1063783419030314

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419030314

Navigation