Skip to main content
Log in

Microscopic Description of the Mechanism of Transition between the 2H and 4H Polytypes of Silicon Carbide

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract—

The mechanism of displacement of one close-packed SiC layer from one minimum position to another on the example of SiC polytype transition 2H → 4H has been studied by ab initio methods. It has been shown that the intermediate state with monoclinic symmetry Cm greatly facilitates this displacement breaking it into two stages. Initially, the Si atom chiefly moves, only then—mainly the C atom. In this case, the Si–C bond is significantly tilted in comparison with the initial position, which allows the reducing of the compression of the SiC bonds in the (\(11\bar {2}0\)) plane. Two transition states of this process, which also possess the Cm symmetry, have been computed. It has been found that the height of the activation barrier of the process of moving the close-packed layer of SiC from one position to another is equal to 1.8 eV. The energy profile of this movement has been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Wipperman, Y. He, M. Voros, and G. Galli, Appl. Phys. Rev. 3, 040807 (2016).

    Article  ADS  Google Scholar 

  2. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 55, 1754 (2013).

    Article  ADS  Google Scholar 

  3. M. T. Sebastian and P. Krishna, Random, Non-Random and Periodic Faulting in Crystals (Taylor and Francis, Routledge, 2014).

  4. J. Fan and P. K. Chu, Silicon Carbide Nanostructures. Fabrication, Structure, and Properties (Springer, Cham, 2014).

    Google Scholar 

  5. R. A. Minamisawa, A. Mihaila, I. Farkas, V. S. Teodorescu, V. V. Afanas’ev, C.-W. Hsu, E. Janzen, and M. Rahimo, Appl. Phys. Lett. 108, 143502 (2016).

    Article  ADS  Google Scholar 

  6. T. Tagai, S. Sueno, and R. Sadanaga, Mineral. J. 6, 340 (1971).

    Article  Google Scholar 

  7. J. A. Powell and H. A. Will, J. Appl. Phys. 43, 1400 (1972).

    Article  ADS  Google Scholar 

  8. N. W. Jepps and T. F. Page, Prog. Cryst. Growth Charact. 7, 259 (1983).

    Article  Google Scholar 

  9. A. A. Lebedev, S. Yu. Davydov, L. M. Sorokin, and L. V. Shakhov, Tech. Phys. Lett. 41, 1156 (2015).

    Article  ADS  Google Scholar 

  10. S. Yu. Davydov and A. A. Lebedev, Semiconductors 41, 621 (2007).

    Article  ADS  Google Scholar 

  11. D. Pandey, S. Lele, and P. Krishna, Proc. R. Soc. London, Ser. A 369, 463 (1980).

    Article  ADS  Google Scholar 

  12. G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).

    Article  ADS  Google Scholar 

  13. K. J. Caspersen and E. A. Carter, Proc. Natl. Acad. Sci. U. S. A. 102, 6738 (2005).

    Article  ADS  Google Scholar 

  14. A. V. Osipov, J. Phys. D 28, 1670 (1995).

    Article  ADS  Google Scholar 

  15. A. V. Osipov, Thin Solid Films 261, 173 (1995).

    Article  ADS  Google Scholar 

  16. J. G. Lee, Computational Materials Science, An Introduction (CRC, Taylor and Francis, Roca Baton, FL, 2017).

    Google Scholar 

  17. D. S. Sholl and J. A. Steckel, Density Functional Theory. A Practical Introduction (Wiley, Hoboken, 2009).

    Book  Google Scholar 

  18. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  19. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vyd-rov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  20. P. Atkins and J. de Paula, Atkins’ Physical Chemistry (Oxford Univ. Press, Oxford, 2006).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is executed at financial support of Russian Science Foundation (grant no. 14-12-01102). The work was performed using the equipment of the Unique stand (UNO) “Physics, chemistry, and mechanics of crystals and thin films” of FGUP IPMash RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kukushkin.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, S.A., Osipov, A.V. Microscopic Description of the Mechanism of Transition between the 2H and 4H Polytypes of Silicon Carbide. Phys. Solid State 61, 288–291 (2019). https://doi.org/10.1134/S1063783419030181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419030181

Navigation