Skip to main content
Log in

Effect of a Nitrogen Doping and a Mechanical Stress on the Adsorption Capacity of Graphdiene

  • GRAPHENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The quantum chemical simulation of adsorption of atomic hydrogen on pristine and nitrogen-doped graphdienes has been performed. The preferential sites, adsorption on which is most energetically beneficial, are indicated. The nitrogen presence is shown to substantially increase the adsorption capacity of the sheet. A capacity of the nitrogen-doped graphdiene to be reversibly stretched by 4% under action of external mechanical stress is demonstrated. A mechanical stretching is found to enable the control of the adsorption properties of pristine and also doped graphdienes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. H. Baughman, H. Eckhardt, and M. Kertesz, J. Chem. Phys. 87, 6687 (1987).

    Article  ADS  Google Scholar 

  2. M. M. Haley, S. C. Brand, and J. J. Pak, Angew. Chem. Int. Ed. Eng. 36, 835 (1997).

    Article  Google Scholar 

  3. G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Chem. Commun. 46, 3256 (2010).

    Article  Google Scholar 

  4. G. Li, Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, and Y. Li, J. Phys. Chem. C 115, 2611 (2011).

    Article  Google Scholar 

  5. X. Qian, Z. Ning, Y. Li, H. Liu, C. Ouyang, Q. Chen, and Y. Li, Dalton Trans. 41, 730 (2012).

    Article  Google Scholar 

  6. J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, and Z. Liu, J. Am. Chem. Soc. 137, 7596 (2015).

    Article  Google Scholar 

  7. N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Phys. Rev. B 58, 11009 (1998).

    Article  ADS  Google Scholar 

  8. A. L. Ivanovskii, Prog. Solid State Chem. 41, 1 (2013).

    Article  Google Scholar 

  9. G. Luo, X. Qian, H. Liu, R. Qin, J. Zhou, L. Li, Z. Gao, E. Wang, W.-N. Mei, J. Lu, Y. Li, and S. Nagase, Phys. Rev. B 84, 075439 (2011).

    Article  ADS  Google Scholar 

  10. Y. Pei, Phys. B (Amsterdam, Neth.) 407, 4436 (2012).

  11. M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, ACS Nano 5, 2593 (2011).

    Article  Google Scholar 

  12. K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 (2008).

    Article  ADS  Google Scholar 

  13. X. Qian, Z. Ning, Y. Li, H. Liu, C. Ouyang, Q. Chen, and Y. Li, Dalton Trans. 41, 730 (2012).

    Article  Google Scholar 

  14. G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Chem. Commun. 46, 3256 (2010).

    Article  Google Scholar 

  15. J. A. Marsden and M. M. Haley, J. Org. Chem. 70, 10213 (2005).

    Article  Google Scholar 

  16. Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, and S. C. Smith, Chem. Commun. 47, 11843 (2011).

    Article  Google Scholar 

  17. K. Srinivasu and S. K. Ghosh, J. Phys. Chem. C 116, 5951 (2012).

    Article  Google Scholar 

  18. J. Koo, M. Park, S. Hwang, B. Huang, B. Jang, Y. Kwon, and H. Lee, Phys. Chem. Chem. Phys. 16, 8935 (2014).

    Article  Google Scholar 

  19. Y. Li, L. Xu, H. Liu, and Y. Li, Chem. Soc. Rev. 43, 2572 (2014).

    Article  Google Scholar 

  20. X. Chen, P. Gao, L. Guo, Y. Wen, Y. Zhang, and S. Zhang, J. Phys. Chem. Solids 105, 61 (2017).

    Article  ADS  Google Scholar 

  21. Y. Pan, Y. Wang, L. Wang, H. Zhong, R. Quhe, Z. Ni, M. Ye, W.-N. Mei, J. Shi, W. Guo, J. Yang, and J. Lu, Nanoscale 7, 2116 (2015).

    Article  ADS  Google Scholar 

  22. J. Li, T. Jiu, C. Duan, Y. Wang, H. Zhang, H. Jian, Y. Zhao, N. Wang, C. Huang, and Y. Li, Nano Energy 46, 331 (2018).

    Article  Google Scholar 

  23. H. Du, Z. Deng, Z. Lü, Y. Yin, L. Yu, H. Wu, Z. Chen, Y. Zou, Y. Wang, H. Liu, and Y. Li, Synth. Met. 161, 2055 (2011).

    Article  Google Scholar 

  24. C. Kuang, G. Tang, T. Jiu, H. Yang, H. Liu, B. Li, W. Luo, X. Li, W. Zhang, F. Lu, J. Fang, and Y. Li, Nano Lett. 15, 2756 (2015).

    Article  ADS  Google Scholar 

  25. K. Wang, N. Wang, J. He, Z. Yang, X. Shen, and C. Huang, Electrochem. Acta 253, 506 (2017).

    Article  Google Scholar 

  26. H. Zhang, Y. Xia, H. Bu, X. Wang, M. Zhang, Y. Luo, and M. Zhao, J. Appl. Phys. 113, 44309 (2013).

    Article  Google Scholar 

  27. H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, and L. Mao, J. Am. Chem. Soc. 137, 5260 (2015).

    Article  Google Scholar 

  28. R. Liu, H. Liu, Y. Li, Y. Yi, X. Shang, S. Zhang, X. Yu, S. Zhang, H. Cao, and G. Zhang, Nanoscale 6, 11336 (2014).

    Article  ADS  Google Scholar 

  29. X. Chen, P. Gao, L. Guo, and S. Zhang, Sci. Rep. 5, 16720 (2015).

    Article  ADS  Google Scholar 

  30. G. Li and Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, Y. Li, J. Phys. Chem. C 115, 2611 (2011).

    Article  Google Scholar 

  31. J. Gong, Y. Tang, and P. Yang, J. Mol. Struct. 1064, 32 (2014).

    Article  ADS  Google Scholar 

  32. H. Qiul and X. Sheng, Phys. Lett. A 382, 662 (2018).

    Article  ADS  Google Scholar 

  33. N. Ketabi, T. M. Tolhurst, B. Leedahl, H. Liu, Y. Li, and A. Moewes, Carbon 123, 1 (2017).

    Article  Google Scholar 

  34. P. Zhang, S. Ma, and L. Z. Sun, Appl. Surf. Sci. 361, 206 (2016).

    Article  ADS  Google Scholar 

  35. Y. Jiao, A. Du, S. C. Smith, Z. Zhu, and S. Z. Qiao, J. Mater. Chem. A 3, 6767 (2015).

    Article  Google Scholar 

  36. L. Zhao, P. Sang, S. Guo, X. Liu, J. Li, H. Zhu, and W. Guo, Appl. Surf. Sci. 405, 455 (2017).

    Article  ADS  Google Scholar 

  37. M. Bartolomei, E. Carmona-Novillo, M. I. Hernández, J. Campos-Martínez, F. Pirani, G. Giorgi, and K. Yamashita, J. Phys. Chem. Lett. 5, 751 (2014).

    Article  Google Scholar 

  38. H. Shang, Z. Zuo, H. Zheng, K. Li, Z. Tu, Y. Yi, H. Liu, and Y. Li, Nano Energy 44, 144 (2018).

    Article  Google Scholar 

  39. Z. Zhang and K. Cho, Phys. Rev. B 75, 075420 (2007).

    Article  ADS  Google Scholar 

  40. K. Y. Kang, B. I. Lee, and J. S. Lee, Carbon 47, 1171 (2009).

    Article  Google Scholar 

  41. D. W. Boukhvalov and Y.-W. Son, Chem. Phys. Chem. 13, 1463 (2012).

    Article  Google Scholar 

  42. K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Phys. Lett. A 381, 2686 (2017).

    Article  ADS  Google Scholar 

  43. S. Yu. Davydov, Phys. Solid State 59, 845 (2017).

    Article  ADS  Google Scholar 

  44. K. P. Katin and M. M. Maslov, Russ. J. Phys. Chem. B 5, 770 (2011).

    Article  Google Scholar 

  45. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2015).

    Article  Google Scholar 

  46. K. P. Katin and M. M. Maslov, J. Phys. Chem. Solids 108, 82 (2017).

    Article  ADS  Google Scholar 

  47. N. N. Degtyarenko, K. P. Katin, and M. M. Maslov, Phys. Solid State 56, 1467 (2014)].

    Article  ADS  Google Scholar 

  48. L. A. Openov and A. I. Podlivaev, Phys. Solid State 58, 847 (2016).

    Article  ADS  Google Scholar 

  49. A. I. Podlivaev and K. P. Katin, JETP Lett. 92, 52 (2010).

    Article  ADS  Google Scholar 

  50. S. A. Shostachenko, M. M. Maslov, V. S. Prudkovskii, and K. P. Katin, Phys. Solid State 57, 1023 (2015).

    Article  ADS  Google Scholar 

  51. K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Phys. E (Amsterdam, Neth.) 81, 1 (2016).

  52. K. P. Katin, S. A. Shostachenko, A. I. Avkhadieva, and M. M. Maslov, Adv. Phys. Chem. 2015, 1 (2015).

    Article  Google Scholar 

  53. M. M. Maslov and K. P. Katin, Chem. Phys. Lett. 644, 280 (2016).

    Article  ADS  Google Scholar 

  54. M. M. Maslov and K. P. Katin, Chem. Phys. 387, 66 (2011).

    Article  Google Scholar 

  55. I. Yu. Dolinskii, K. P. Katin, K. S. Grishakov, V. S. Prudkovskii, N. I. Kargin, and M. M. Maslov, Phys. Solid State 60, 821 (2018).

    Article  ADS  Google Scholar 

  56. I. Y. Dolinskiy and N. V. Novikov, J. Phys.: Conf. Ser. 938, 12068 (2017).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-32-60081 mol_a_dk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Grishakov.

Additional information

Translayed by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolinskii, I.Y., Grishakov, K.S. & Prudkovskii, V.S. Effect of a Nitrogen Doping and a Mechanical Stress on the Adsorption Capacity of Graphdiene. Phys. Solid State 61, 274–278 (2019). https://doi.org/10.1134/S1063783419020100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419020100

Navigation