Skip to main content
Log in

An Effect of Internal Structure of Bimetallic Nanoparticles on Optical Properties for AuAg/Glass Material

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Optical extinction spectra calculated via multisphere T-matrices for nanoparticles with different concentrations of metals and different architectures (core–shell, inverse core–shell, or alloy) are considered. A method is proposed for determination of architecture of nanoparticles (core–shell or alloy) from only data on the position of plasmon resonance and composition of components. The use of an optical spectrum fitting technique to the spectra of monodisperse noninteracting bimetallic nanoparticles with a predetermined structure appeared to be effective for the determination of the internal structure of nanoparticles, except large nanoparticles with a radius of more than 60 nm containing less than ∼25% silver atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. J. de Aberasturi, A. B. Serrano-Montes, and L. M. Liz-Marzan, Adv. Opt. Mater. 3, 602 (2015). doi 10.1002/adom.201500053

    Article  Google Scholar 

  2. I. A. Gladskikh and T. A. Vartanyan, Opt. Spectroscopy 121, 851 (2016). doi 10.1134/S0030400X16120109

    Article  ADS  Google Scholar 

  3. V. Amendola, R. Pilot, M. Frasconi, O. M. Marago, and M. A. Iati, J. Phys.: Condens. Matter 29, 203002 (2017).

    ADS  Google Scholar 

  4. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

    Book  Google Scholar 

  5. T. Hartman, C. S. Wondergem, N. Kumar, A. van den Berg, and B. M. Weckhuysen, J. Phys. Chem. Lett. 7, 1570 (2016). doi 10.1021/acs.jpclett.6b00147

    Article  Google Scholar 

  6. L.-B. Luo, K. Zheng, C.-W. Ge, Y.-F. Zou, R. Lu, Y. Wang, D.-D. Wang, T.-F. Zhang, and F.-X. Liang, Plasmonics 11, 619 (2016). doi 10.1007/s11468-015-0091-3

    Article  Google Scholar 

  7. R. Ghosh Chaudhuri and S. Paria, Chem. Rev. 112, 2373 (2012). doi 10.1021/cr100449n

    Article  Google Scholar 

  8. V. Guterman, S. Belenov, A. Pakharev, M. Min, N. Tabachkova, E. Mikheykina, L. Vysochina, and T. Lastovina, Int. J. Hydrogen Energy 41, 1609 (2016). doi 10.1016/j.ijhydene.2015.11.002

    Article  Google Scholar 

  9. T. Dang-Bao, D. Pla, I. Favier, and M. Gomez, Catalysis 7 (2017). doi 10.3390/catal7070207

  10. L. Lu, G. Burkey, I. Halaciuga, and D. V. Goia, J. Colloid Interface Sci. 392, 90 (2013). doi 10.1016/j.jcis.2012.09.057

    Article  ADS  Google Scholar 

  11. J. Haug, H. Kruth, M. Dubiel, H. Hofmeister, S. Haas, D. Tatchev, and A. Hoell, Nanotechnology 20, 505705 (2009).

    Article  Google Scholar 

  12. G. N. Makarov, Phys. Usp. 56, 643 (2013). doi 10.3367/UFNr.0183.201307a.0673

    Article  ADS  Google Scholar 

  13. J. Deng, J. Du, Y. Wang, Y. Tu, and J. Di, Electrochem. Commun. 13, 1517 (2011). doi 10.1016/j.elecom.2011.10.010

    Article  Google Scholar 

  14. P. Dong, Y. Lin, J. Deng, and J. Di, ACS Appl. Mater. Interfaces 5, 2392 (2013). doi 10.1021/am4004254

    Article  Google Scholar 

  15. S. M. Morton, D. W. Silverstein, and L. Jensen, Chem. Rev. 111, 3962 (2011). doi 10.1021/cr100265f

    Article  Google Scholar 

  16. S. Bernadotte, F. Evers, and C. R. Jacob, J. Phys. Chem. C 117, 1863 (2013). doi 10.1021/jp3113073

    Article  Google Scholar 

  17. P. Koval, F. Marchesin, D. Foerster, and D. Sanchez-Portal, J. Phys.: Condens. Matter 28, 214001 (2016).

    ADS  Google Scholar 

  18. N. A. Olekhno, Y. M. Beltukov, and D. A. Parshin, Phys. Solid State 57, 2479 (2015). doi 10.1134/S1063783415120252

    Article  ADS  Google Scholar 

  19. A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. D. Angelis, E. D. Fabrizio, and R. P. Zaccaria, Materials 6, 4879 (2013). doi 10.3390/ma6114879

    Article  ADS  Google Scholar 

  20. P. Jahanshahi, M. Ghomeishi, and F. R. M. Adikan, Sci. World J. 2014, 6 (2014). doi 10.1155/2014/503749

  21. A. Derkachova, K. Kolwas, and I. Demchenko, Plasmonics (Norwell, MA) 11, 941 (2016). doi 10.1007/s11468-015-0128-7

    Article  Google Scholar 

  22. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, New J. Phys. 4, 93 (2002).

    Article  ADS  Google Scholar 

  23. X. Fan, W. Zheng, and D. J. Singh, Light Sci. Appl. 3, e179 (2014).

    Article  ADS  Google Scholar 

  24. A. Crut, P. Maioli, F. Vallée, and N. D. Fatti, J. Phys.: Condens. Matter 29, 123002 (2017).

    ADS  Google Scholar 

  25. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, Nano Lett. 5, 515 (2005). doi 10.1021/nl050062t

    Article  ADS  Google Scholar 

  26. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Timedomain Method (Artech House, London, 2005).

    MATH  Google Scholar 

  27. J. Jin, The Finite Element Method in Electromagnetics (Wiley, Hoboken, NJ, 2015).

    Google Scholar 

  28. B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994). doi 10.1364/JOSAA.11.001491

    Article  ADS  Google Scholar 

  29. P. J. Flatau and B. T. Draine, Opt. Express 20, 1247 (2012). doi 10.1364/OE.20.001247

    Article  ADS  Google Scholar 

  30. O. Zhuromskyy, Crystals 7, 1 (2017). doi 10.3390/cryst7010001

    Article  Google Scholar 

  31. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fer-nig, Anal. Chem. 79, 4215 (2007). doi 10.1021/ac0702084

    Article  Google Scholar 

  32. P. N. Njoki, I.-I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, J. Phys. Chem. C 111, 14664 (2007). doi 10.1021/jp074902z

    Article  Google Scholar 

  33. M. Heinz, V. V. Srabionyan, A. L. Bugaev, V. V. Pryadchenko, E. V. Ishenko, L. A. Avakyan, Y. V. Zubavichus, J. Ihlemann, J. Meinertz, E. Pippel, M. Dubiel, and L. A. Bugaev, J. Alloys Compd. 681, 307 (2016). doi 10.1016/j.jallcom.2016.04.214

    Article  Google Scholar 

  34. Y.-L. Xu, Appl. Opt. 34, 4573 (1995). doi 10.1364/AO.34.004573

    Article  ADS  Google Scholar 

  35. G. Gouesbet and G. Grehan, J. Opt. A 1, 706 (1999).

    Article  ADS  Google Scholar 

  36. P. C. Waterman, Proc. IEEE 53, 805 (1965). doi 10.1109/PROC.1965.4058

    Article  Google Scholar 

  37. M. I. Mishchenko, J. Opt. Soc. Am. A 8, 871 (1991). doi 10.1364/JOSAA.8.000871

    Article  ADS  Google Scholar 

  38. D. W. Mackowski and M. I. Mishchenko, J. Opt. Soc. Am. A 13, 2266 (1996). doi 10.1364/JOSAA.13.002266

    Article  ADS  Google Scholar 

  39. N. G. Khlebtsov, J. Quant. Spectrosc. Rad. Transfer 123, 184 (2013). doi 10.1016/j.jqsrt.2012.12.027

    Article  ADS  Google Scholar 

  40. M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, G. Videen, and T. Wriedt, J. Quant. Spectrosc. Rad. Transfer 178, 276 (2016). doi 10.1016/j.jqsrt.2015.11.005

    Article  ADS  Google Scholar 

  41. M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, G. Videen, and T. Wriedt, J. Quant. Spectrosc. Rad. Transfer 202, 240 (2017). doi 10.1016/j.jqsrt.2017.08.007

    Article  ADS  Google Scholar 

  42. L. Avakyan, M. Heinz, A. Skidanenko, K. A. Yablunovskiy, J. Ihlemann, J. Meinertz, C. Patzig, M. Dubiel, and L. Bugaev, J. Phys.: Condens. Matter 30, 045901 (2018). doi 10.1088/1361-648X/aa9fcc

    ADS  Google Scholar 

  43. C. Zhang, B.-Q. Chen, Z.-Y. Li, Y. Xia, and Y.‑G. Chen, J. Phys. Chem. C 119, 1683616845 (2015). doi 10.1021/acs.jpcc.5b04232

    Google Scholar 

  44. D. Mackowski and M. Mishchenko, J. Quant. Spectrosc. Rad. Transfer 112, 2182 (2011). doi 10.1016/j.jqsrt.2011.02.019

    Article  ADS  Google Scholar 

  45. L. A. Avakyan, Python Wrapper for Multiple Sphere T‑Matrix (MSTM) Code to Calculate Surface Plasmon    Resonance (SPR) Spectrum, 2017. https://github.com/lavakyan/mstmspectrum.

  46. D. Rioux, S. Vallieres, S. Besner, P. Munoz, E. Mazur, and M. Meunier, Adv. Opt. Mater. 2, 176 (2014). doi 10.1002/adom.201300457

    Article  Google Scholar 

  47. A. R. Denton and N. W. Ashcroft, Phys. Rev. A 43, 3161 (1991). doi 10.1103/physreva.43.3161

    Article  ADS  Google Scholar 

  48. S. Ristig, O. Prymak, K. Loza, M. Gocyla, W. Meyer-Zaika, M. Heggen, D. Raabe, and M. Epple, J. Mater. Chem. B 3, 4654 (2015). doi 10.1039/c5tb00644a

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Grant of the Southern Federal University (VnGr-07/201706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Avakyan.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skidanenko, A.V., Avakyan, L.A., Kozinkina, E.A. et al. An Effect of Internal Structure of Bimetallic Nanoparticles on Optical Properties for AuAg/Glass Material. Phys. Solid State 60, 2571–2578 (2018). https://doi.org/10.1134/S1063783419010256

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419010256

Navigation