Skip to main content
Log in

Energy Transfer from Ce3+ to Tb3+ in Yttrium and Gadolinium Orthoborates Obtained by Hydrothermal Synthesis

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We studied the structure, IR absorption spectra, the spectral characteristics of photoluminescence and morphology of cerium- and terbium-doped orthoborates of gadolinium and yttrium obtained by hydrothermal synthesis at 200°C, as well as solid solutions of orthoborates on the basis of yttrium, gadolinium, and lutetium with composition RECe0.01Tb0.1BO3 (RE = Lu0.5Gd0.39, Lu0.5Y0.39, and Y0.5Gd0.39). The X-ray diffraction spectrum of yttrium orthoborate Y1 – x  yCexTbyBO3 is described by a hexagonal lattice with space group P63/m, which, after annealing at 970°C, transforms into a monoclinic lattice with space group C2/c. High-temperature annealing of the studied orthoborates leads to a multiple, more than two orders of magnitude, increase in the luminescence intensity of Tb3+ ions when the samples are excited in the absorption band of cerium ions. This effect is the result of a significant increase in the concentration of Ce3+ ions in the orthoborates at high temperatures. It is shown that the luminescence of terbium ions is due to energy transfer from Ce3+ to Tb3+, which proceeds with high efficiency (∼85%) by the mechanism of dipole-dipole interaction between cerium and terbium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S. Z. Shmurak, V. V. Kedrov, A. P. Kiselev, T. N. Fur-sova, and I. M. Shmyt’ko, Phys. Solid State 58, 578 (2016).

    Article  ADS  Google Scholar 

  2. Xiao-Cheng Jiang, Ling-Dong Sun, and Chun-Hua Yan, J. Phys. Chem. B 108, 3387 (2004).

    Article  Google Scholar 

  3. J. Ma, Q. Wu, Y. Ding, and Yun Chen, Cryst. Growth Des. 7, 1553 (2007).

    Article  Google Scholar 

  4. Jun Yang, Chunxia Li, Xiaoming Zhang, Zewei Quan, Cuimiao Zhang, Huaiyong Li, and Jun Lin, Chem. Eur. J. 14, 4336 (2008).

    Article  Google Scholar 

  5. Jun Yang, Cuimiao Zhang, Lili Wang, Zhiyao Hou, Shanshan Huang, Hongzhou Lian, and Jun Lin, J. Solid State Chem. 181, 2672 (2008).

    Article  ADS  Google Scholar 

  6. Yanping Li, Jiahua Zhang, Xia Zhang, Yongshi Luo, Shaozhe Lu, Xinguang Ren, Xiaojun Wang, Lingdong Sun, and Chunhua Yan, Chem. Mater. 21, 468 (2009).

    Article  Google Scholar 

  7. Jun Yang, Honggui Zhang, Zhenling Wang, Chengzhi Huang, Lei Zou, Peng Cai, Yunfei Zhang, and Shanshan Hu, J. Mater. Sci. 48, 2258 (2013).

    Article  ADS  Google Scholar 

  8. S. Z. Shmurak, V. V. Kedrov, A. P. Kiselev, T. N. Fur-sova, and O. G. Rybchenko, Phys. Solid State 59, 1171 (2017).

    Article  ADS  Google Scholar 

  9. G. Chadeyron, M. El-Ghozzi, R. Mahiou, A. Arbus, and J. C. Cousseins, J. Solid State Chem. 128, 261 (1997).

    Article  ADS  Google Scholar 

  10. R. E. Newnham, M. J. Redman, and R. P. Santoro, J. Am. Ceram. Soc. 46, 253 (1963).

    Article  Google Scholar 

  11. Zhang Hao, Chen Jindeng, and Guo Hai, J. Rare Earths 29, 822 (2011).

    Article  Google Scholar 

  12. Zhongyi Zhang, Yunhong Zhang, Xiaoli Li, Jianhua Xuc, and Yan Huang, J. Alloys Comp. 455, 280 (2008).

    Article  Google Scholar 

  13. Ling Li, Shihong Zhou, and Siyuan Zhang, Solid State Sci. 10, 1173 (2008).

    Article  ADS  Google Scholar 

  14. A. Szczeszak, T. Grzyb, St. Lis, and R. J. Wiglusz, Dalton Trans. 41, 5824 (2012).

    Article  Google Scholar 

  15. C. E. Weir and E. R. Lippincott, J. Res. Natl. Bureau Stand. A 65, 173 (1961).

    Article  Google Scholar 

  16. J. H. Denning and S. D. Ross, Spectrochim. Acta A 28, 1775 (1972).

    Article  ADS  Google Scholar 

  17. Xiao-Cheng Jiang, in Series of Selected Papers from Chun-Tsung Scholars (Peking Univ., 2003). http://dean.pku.edu.cn/bksky/2000jzlwj/14.pdf.

  18. Yu Hua Wang, Chun Fang Wu, and Jia Chi Zhang, Mater. Res. Bull. 41, 1571 (2006).

    Article  Google Scholar 

  19. Jie Ma, Qingsheng Wu, Yun Chen, and Yijun Chen, Solid State Sci. 12, 503 (2010).

    Article  ADS  Google Scholar 

  20. A. Szczeszak, K. Kubasiewicz, T. Grzyb, and S. Lis, J. Lumin. 155, 374 (2014).

    Article  Google Scholar 

  21. S. Z. Shmurak, V. V. Kedrov, A. P. Kiselev, and I. M. Shmyt’ko, Phys. Solid State 57, 18 (2015).

    Article  ADS  Google Scholar 

  22. S. Z. Shmurak, V. V. Kedrov, A. P. Kiselev, T. N. Fur-sova, and I. M. Shmyt’ko, Phys. Solid State 57, 1588 (2015).

    Article  ADS  Google Scholar 

  23. M. J. Weber, S. E. Derenso, and C. Dujardin, in Proceedings of the International Conference on Inorganic Scintillators and Their Applications, SCINT 95, Delft, The Netherlands, Aug. 28–Sept. 1, 1995, Ed. by P. Dorenbos and C. W. E. van Eijk (Delft, The Netherlands, 1996), p. 325.

  24. N. V. Klassen, S. Z. Shmurak, I. M. Shmyt’ko, G. K. Strukova, S. E. Derenso, and M. J. Weber, Nucl. Instrum. Method. Phys. Res., Sect. A 537, 144 (2005).

    Google Scholar 

  25. E. M. Levin, R. S. Roth, and J. B. Martin, Am. Miner. 46, 1030 (1961).

  26. J. Hälsö, Inorg. Chim. Acta 139, 257 (1987).

    Article  Google Scholar 

  27. C. Mansuy, J. M. Nedelec, C. Dujardin, and R. Ma-hiou, Opt. Mater. 29, 697 (2005).

    Article  ADS  Google Scholar 

  28. E. V. Mal’chukova, A. I. Nepomnyashchikh, B. Boizot, T. S. Shamirzaev, and G. Petite, Phys. Solid State 52, 1919 (2010).

    Article  ADS  Google Scholar 

  29. L. Skuja, J. Non-Cryst. Solids 239, 16 (1998).

    Article  ADS  Google Scholar 

  30. G. H. Dieke and H. M. Crosswhite, Appl. Opt. 2, 675 (1963).

    Article  ADS  Google Scholar 

  31. J. H. Lin, D. Sheptyakov, Y. X. Wang, and P. Allenspach, Chem. Mater. 16, 2418 (2004).

    Article  Google Scholar 

  32. Y. Jin, Y. Hu, Li Chen, X. Wang, Z. Mu, G. Ju, and Z. Yang, Phys. B (Amsterdam, Neth.) 436, 105 (2014).

Download references

ACKNOWLEDGMENTS

We thank E.Yu. Postnova for the study of the morphology of samples and N.F. Prokopyuk for assistance in conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Shmurak.

Additional information

Translated by V. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmurak, S.Z., Kedrov, V.V., Kiselev, A.P. et al. Energy Transfer from Ce3+ to Tb3+ in Yttrium and Gadolinium Orthoborates Obtained by Hydrothermal Synthesis. Phys. Solid State 60, 2579–2592 (2018). https://doi.org/10.1134/S1063783419010244

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419010244

Navigation