Effect of Sequential Heat Impacts on the Formation of a Stable State of the xLPM–(1 – x)PT Multiferroic Composites

Abstract

The effect of thermal cycling and sintering temperature on the chemical and thermodynamic stability of the bulk multiferroic xLa0.7Pb0.3MnO3–(1 – x)PbTiO3 quasi-ceramic and ceramic composites has been experimentally investigated. It is shown that the limiting temperature of the long-term sample firing should not exceed 1070 K. It has been found that sintering at this temperature and/or short-term exposure of the samples at higher temperatures (up to 1220 K) significantly increase the sample compactness, stabilize the thermal expansion, and enhance the quality of the composites. It has been established that the component grain integrity is violated by shrinkage of the samples and a sharp change in their volume during the phase transition of a ferroelectric component.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    H. Schmid, Ferroelectrics 162, 317 (1994).

    Article  Google Scholar 

  2. 2

    C.-W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, Y. H. Lin, L. J. Dong, and C. X. Xiong, Appl. Phys. Lett. 81, 3831 (2002).

    ADS  Article  Google Scholar 

  3. 3

    S. A. Gridnev, Yu. E. Kalinin, A. V. Kalgin, and E. S. Grigor’ev, Phys. Solid State 57, 1372 (2015).

    ADS  Article  Google Scholar 

  4. 4

    W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London, U.K.) 442, 759 (2006).

    ADS  Article  Google Scholar 

  5. 5

    K. Zvezdin and A. P. Pyatakov, Phys. Usp. 47, 416 (2004).

    ADS  Article  Google Scholar 

  6. 6

    M. I. Bichurin and V. M. Petrov, Low Temp. Phys. 36, 544 (2010).

    ADS  Article  Google Scholar 

  7. 7

    H. S. Bhattia, S. T. Hussaina, F. A. Khanb, and Sh. Hussain, Appl. Surf. Sci. 367, 291 (2016).

    ADS  Article  Google Scholar 

  8. 8

    J. F. Scott and R. Blinc, J. Phys.: Condens. Matter 23, 113202 (2011).

    ADS  Google Scholar 

  9. 9

    N. Aparnadevi, K. S. Kumar, M. Manikandan, P. Joseph, and C. Venkateswaran, J. Appl. Phys. 120, 034101 (2016).

    ADS  Article  Google Scholar 

  10. 10

    A. V. Kalgin, S. A. Gridnev, and A. A. Amirov, Phys. Solid State 60, 1239 (2018).

    ADS  Article  Google Scholar 

  11. 11

    M. M. Vopson, Solid State Commun. 152, 2067 (2012).

    ADS  Article  Google Scholar 

  12. 12

    I. N. Flerov, Izv. SPb. Univ. Nizkotemp. Pishchev. Tekhnol., No. 1, 41 (2008).

  13. 13

    E. Mikhaleva, I. Flerov, A. Kartashev, M. Gorev, A. Cherepakhin, K. Sablina, N. Mikhashenok, N. Vol-kov, and A. Shabanov, J. Mater. Res. 28, 3322 (2013).

    ADS  Article  Google Scholar 

  14. 14

    E. Mikhaleva, I. Flerov, M. Gorev, M. Molokeev, A. Cherepakhin, A. Kartashev, N. Mikhashenok, and K. Sablina, Phys. Solid State 54, 1832 (2012).

    ADS  Article  Google Scholar 

  15. 15

    A. V. Kartashev, E. A. Mikhaleva, M. V. Gorev, E. V. Bog-danov, A. V. Cherepakhin, K. A. Sablina, N. V. Mi-khashonok, I. N. Flerov, and N. V. Volkov, J. Appl. Phys. 113, 073901 (2013).

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Territory, and the Krasnoyarsk Territorial Foundation for Support of the Scientific and R&D Activity, project no. 17-42-240076 “Complex Approach to Searching and Development of Promising Solid-State Ferroic Cooling Agents Based on the Single- and Multicaloric Effects.”

The authors thank M.S. Molokeev for structural characterization of the composites.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. A. Mikhaleva.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikhaleva, E.A., Flerov, I.N., Gorev, M.V. et al. Effect of Sequential Heat Impacts on the Formation of a Stable State of the xLPM–(1 – x)PT Multiferroic Composites. Phys. Solid State 60, 2524–2531 (2018). https://doi.org/10.1134/S1063783419010189

Download citation