Physics of the Solid State

, Volume 60, Issue 12, pp 2424–2435 | Cite as

On Possible States of the Crystal Structure Preceding to a Phase Transition in Zn1 – xVxSe (0.01 ≤ x ≤ 0.10) Crystals

  • V. I. MaksimovEmail author
  • E. N. Maksimova
  • T. P. Surkova
  • A. P. Vokhmyanin


The systematic new formations observed in the reciprocal lattice of the cubic structural modification of a II–VI compound are characterized using a detailed neutron diffraction study of bulk semiconducting ZnSe crystals with an increased vanadium content. Direct evidence that the additional sites k = (1/3 1/3 1/3) 2π/a (k is the wave vector and a is cubic unit cell parameter) observed by neutron scattering in the crystals, in the case when they belong to mutually penetrated rotated sublattices, contain a superstructure contribution formed by short-wave deformation, is obtained for the first time. This structure state is determined as a pretransition to the concentration fcc–hcp phase transformation, and the basis functions that allow one to analyze atomic displacements, the correlation between which create distortion-type superstructures, are indicated for the transition through one-arm channel, considering the transitions by the star of wave vector k5 of the fcc lattice.



This work was performed in the framework of the state test by the themes (S.R. No. AAAA-A18-118020190112-8) and “Electron” (S.R. No. AAAA-A18-118020190098-5, using UNU “NMK IMP.”


  1. 1.
    Introduction to the Physics of Diluted Magnetic Semiconductors, Ed. by J. Kossut, and J. A. Gaj, Springer Ser. Mater. Sci. 144 (2010).Google Scholar
  2. 2.
    S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, Laser Photon. Rev. 4, 21 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    K. S. Lee, G. Oh, and E. K. Kim, Solar Energy 164, 262 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    M. Makkar and R. Viswanatha, Curr. Sci. 112, 1421 (2017).CrossRefGoogle Scholar
  6. 6.
    P. Kaur, S. Kumar, A. Singh, C. L. Chen, C. L. Dong, T. S. Chan, K. P. Lee, C. Srivastava, S. M. Rao, and M. K. Wu, Superlatt. Microstruct. 83, 785 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    M. Hassan, S. Younas, F. Sher, S. S. Husain, S. Riaz, and S. Naseem, Appl. Phys. A 123, 352 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    D. Saikia, R. D. Raland, and J. P. Borah, Phys. E (Amsterdam, Neth.) 83, 56 (2016).Google Scholar
  9. 9.
    J. Yang, F. Muckel, W. Baek, R. Fainblat, H. Chang, G. Bacher, and T. Hyeon, J. Am. Chem. Soc. 139, 6761 (2017).CrossRefGoogle Scholar
  10. 10.
    Y.-T. Liu, L.-P. Hou, S.-Y. Zou, L. Zhang, B.-B. Liang, Y.-C. Guo, A. Bukhtiar, M. U. Farooq, and B.-S. Zou, Chin. Phys. Lett. 35, 037801 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    M. P. Shaskol’skaya, Crystallography (Vyssh. Shkola, Moscow, 1984) [in Russian].Google Scholar
  12. 12.
    J. Furdyna and J. Kossuth, Semiconductors and Semimetals (Elsevier, Amsterdam, 1988), Vol. 25.Google Scholar
  13. 13.
    Chin-Yu Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B 46, 10086 (1992).CrossRefGoogle Scholar
  14. 14.
    V. F. Agekyan, Phys. Solid State 44, 2013 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    A. S. Pashinkin, G. N. Tishchenko, I. V. Korneeva, and B. N. Ryzhenko, Sov. Phys. Crystallogr. 5, 243 (1960).Google Scholar
  16. 16.
    Yu. Yu. Loginov, P. D. Brown, and K. Durose, Regularities of Structural Defects Formation in Semiconductors A 2 B 6 (Logos, Moscow, 2003) [in Russian].Google Scholar
  17. 17.
    M. T. Sebastian and P. Krishna, Prog. Cryst. Growth Charact. Mater. 14, 103 (1987).CrossRefGoogle Scholar
  18. 18.
    V. S. Urusov and N. N. Eremin, Crystal Course, The Short Course (Mosk. Gos. Univ., Moscow, 2005), Part 2 [in Russian].Google Scholar
  19. 19.
    A. Kelly and K. M. Knowles, Crystallography and Defects in Crystals (Wiley, Chichester, 2012).CrossRefGoogle Scholar
  20. 20.
    E. Makovicky, Rev. Min. Geochem. 61, 7 (2006).CrossRefGoogle Scholar
  21. 21.
    G. Krishnaiah, N. Madhusudhana Rao, D. Raja Reddy, B. K. Reddy, and P. Shreedhara Reddy, J. Cryst. Growth 310, 26 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    T. P. Surkova, S. F. Dubinin, V. I. Maximov, and S. A. Lopez-Rivera, Phys. Status Solidi C 9, 1830 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    V. I. Maksimov, S. F. Dubinin, and V. D. Parkhomenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7, 105 (2013).CrossRefGoogle Scholar
  24. 24.
    V. I. Maksimov, S. F. Dubinin, T. P. Surkova, and A. V. Korolev, Phys. Solid State 55, 2027 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    V. I. Maksimov, S. F. Dubinin, and T. P. Surkova, Phys. Solid State 56, 912 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    V. I. Maksimov, S. F. Dubinin, and T. P. Surkova, Phys. Solid State 56, 2393 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    V. I. Maksimov, T. P. Surkova, V. D. Parkhomenko, and E. N. Yushkova, Phys. Solid State 58, 650 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    T. Surkova, V. Maksimov, S. Dubinin, and S. A. Lo-pez-Rivera, Phys. Status Solidi C 13, 456 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    V. I. Maksimov, E. N. Maksimova, and T. P. Surkova, Phys. Solid State 60, 49 (2018).ADSCrossRefGoogle Scholar
  30. 30.
    V. I. Maksimov, S. F. Dubinin, and T. P. Surkova, Crystallogr. Rep. 61, 111 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    S. F. Dubinin, V. I. Maksimov, V. D. Parkhomenko, V. I. Sokolov, A. N. Baranov, P. S. Sokolov, and Yu. A. Dorofeev, Phys. Solid State 53, 1362 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    V. I. Maksimov, S. F. Dubinin, A. N. Baranov, V. I. Sokolov, P. S. Sokolov, and V. D. Parkhomenko, Phys. Met. Metallogr. 114, 734 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    M. E. Fleet, Am. Mineralog. 62, 540 (1977).Google Scholar
  34. 34.
    E. Michalski, M. Demianiuk, S. Kaczmarek, and J. Żmija, Acta Phys. Polon. A 58, 711 (1980).Google Scholar
  35. 35.
    T. Roisnel and J. Rodriguez-Carvajal, Winplotr, a Grafic Tool for Powder Diffraction (LLB, CEA-CNRS, France, 2017). Scholar
  36. 36.
    O. V. Kovalev, Irreducible and Induced Representations and Co-Representations of Fedorov’s Groups, Reference Guide (Nauka, Moscow, 1986) [in Russian].Google Scholar
  37. 37.
    Yu. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutron Diffraction of Magnetic Materials (Atomizdat, Moscow, 1981; Springer, New York, 1991), Vol. 2.Google Scholar
  38. 38.
    Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Crystal Symmetry, Vol. 38 of Fundamental Theories of Physics (Nauka, Moscow, 1984; Springer, Netherlands, 1990).Google Scholar
  39. 39.
    F. Bialas, L. Pytlik, and W. Sikora, Open Phys. 14, 559 (2016).CrossRefGoogle Scholar
  40. 40.
    International Tables for Crystallography, Vol. A: Space Group Symmetry, Ed. by T. Hahn (Int. Union Crystallogr., Springer, 2005).Google Scholar
  41. 41.
    S. F. Dubinin, V. I. Sokolov, S. G. Teploukhov, V. D. Parkhomenko, and N. B. Gruzdev, Phys. Solid State 48, 2275 (2006).ADSCrossRefGoogle Scholar
  42. 42.
    S. F. Dubinin, V. I. Sokolov, S. G. Teploukhov, V. D. Parkhomenko, V. V. Gudkov, A. T. Lonchakov, I. V. Zhevstovskikh, and N. B. Gruzdev, Phys. Solid State 49, 1235 (2007).ADSCrossRefGoogle Scholar
  43. 43.
    V. Gudkov, A. Lonchakov, V. Sokolov, and I. Zhev-stovskikh, J. Korean Phys. Soc. 53, 63 (2008).ADSCrossRefGoogle Scholar
  44. 44.
    V. V. Gudkov and I. B. Bersuker, Prog. Theor. Chem. Phys. 23, 143 (2012).CrossRefGoogle Scholar
  45. 45.
    J. F. Smith, in Binary Alloy Phase Diagrams, 2nd ed., ASM/NIST Data Program for Alloy Phase Diagrams (ASM Int., Materials Park, OH, 1996).Google Scholar
  46. 46.
    F. Kröger, The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964).CrossRefGoogle Scholar
  47. 47.
    A. A. Rempel’ and A. I. Gusev, Non-Stoichometry in Solid State (Fizmatlit, Moscow, 2018) [in Russian].Google Scholar
  48. 48.
    N. V. Selezneva, P. N. G. Ibrahim, N. M. Toporova, E. M. Sherokalova, and N. V. Baranov, Acta Phys. Polon. A 133, 450 (2018).CrossRefGoogle Scholar
  49. 49.
    D. M. Chizhikov and V. P. Schastlivyi, Selenium and Selenides (Nauka, Moscow, 1964) [in Russian].Google Scholar
  50. 50.
    L. H. Lewis and J. B. Goodenough, J. Solid State Chem. 114, 346 (1995).ADSCrossRefGoogle Scholar
  51. 51.
    M. Akizuki, Am. Mineral. 66, 1006 (1981).Google Scholar
  52. 52.
    M. Akizuki, Am. Mineral. 68, 847 (1983).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. I. Maksimov
    • 1
    Email author
  • E. N. Maksimova
    • 1
  • T. P. Surkova
    • 1
  • A. P. Vokhmyanin
    • 1
  1. 1.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations