Skip to main content
Log in

Behavior of Cobalt and Rare-Earth Subsystems in Frustrated Cobaltites DyBaCo4O7 + x

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Structural, elastic, and magnetic properties of cobaltites DyBaCo4O7 + x produced by various technologies and distinguished by oxygen excess x are experimentally studied. It was found that rhombic distortion of the crystal structure of annealed stoichiometric samples with x = 0 results in frustration removal and elastic property anomalies in the TN region, caused by cobalt subsystem ordering. At an insignificant oxygen nonstoichiometry, no structural distortions occur in quenched samples, and anomalies in elastic characteristics in the TN region smooth and disappear. The studies of DyBaCo4O7 + x magnetic properties show that the rare-earth (RE) subsystem remains paramagnetic and its contribution exceeds the contribution of the Co-subsystem with strong antiferromagnetic couplings by an order of magnitude. The magnetic susceptibility of the stoichiometric sample does not exhibit an appreciable anomaly at TN, since cobalt subsystem ordering is not accompanied by the formation of a noticeable effective field on RE ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. L. C. Chapon, P. G. Radaelli, H. Zheng, and J. F. Mitchell, Phys. Rev. B 74, 172401 (2006).

    Article  ADS  Google Scholar 

  2. P. Manuel, L. C. Chapon, P. G. Radaelli, H. Zheng, and J. F. Mitchell, Phys. Rev. Lett. 103, 037202 (2009).

    Article  ADS  Google Scholar 

  3. W. Schweika, M. Valldor, and P. Lemmens, Phys. Rev. Lett. 98, 067201 (2007).

    Article  ADS  Google Scholar 

  4. V. Caignaert, V. Pralong, A. Maignan, and B. Raveau, Solid State Commun. 149, 453 (2009).

    Article  ADS  Google Scholar 

  5. V. Caignaert, V. Pralong, V. Hardy, C. Ritter, and B. Raveau, Phys. Rev. B 81, 094417 (2010).

    Article  ADS  Google Scholar 

  6. K. Singh, V. Caignaert, L. C. Chapon, V. Pralong, B. Raveau, and A. Maignan, Phys. Rev. B 86, 024410 (2012).

    Article  ADS  Google Scholar 

  7. E. A. Juarez-Arellano, A. Friedrich, D. J. Wilson, L. Wiehl, W. Morgenroth, B. Winkler, M. Avdeev, R. B. Macquart, and C. D. Ling, Phys. Rev. B 79, 064109 (2009).

    Article  ADS  Google Scholar 

  8. E. V. Tsipis, J. C. Waerenborgh, M. Avdeev, and V. V. Kharton, J. Solid State Chem. 182, 640 (2009).

    Article  ADS  Google Scholar 

  9. L. P. Kozeeva, M. Yu. Kamaneva, A. I. Smolentsev, V. S. Danilovich, and N. V. Podberezskaya, J. Struct. Chem. 49, 1071 (2008).

    Article  Google Scholar 

  10. A. Huq, J. F. Mitchell, H. Zheng, L. C. Chapon, P. G. Radaelli, K. S. Knight, and P. W. Stephens, J. Solid State Chem. 179, 1136 (2006).

    Article  ADS  Google Scholar 

  11. D. D. Khalyavin, L. C. Chapon, P. G. Radaelli, H. Zheng, and J. F. Mitchell, Phys. Rev. B 80, 144107 (2009).

    Article  ADS  Google Scholar 

  12. D. D. Khalyavin, P. Manuel, B. Ouladdiaf, A. Huq, P. W. Stephens, H. Zheng, J. F. Mitchell, and L. C. Chapon, Phys. Rev. B 83, 094412 (2011).

    Article  ADS  Google Scholar 

  13. M. Markina, A. N. Vasiliev, N. Nakayama, T. Mizota, and Y. Yeda, J. Magn. Magn. Mater. 322, 1249 (2010).

    Article  ADS  Google Scholar 

  14. M. J. R. Hoch, P. L. Kuhns, S. Yuan, T. Besara, J. B. Whalen, T. Siegrist, A. P. Reyes, J. S. Brooks, H. Zheng, and J. F. Mitchell, Phys. Rev. B 87, 064419 (2013).

    Article  ADS  Google Scholar 

  15. M. Soda, Y. Yasui, T. Moyoshi, M. Sato, N. Igawa, and K. Kakurai, J. Phys. Soc. Jpn. 75, 054707 (2006).

    Article  ADS  Google Scholar 

  16. M. Valldor, Y. Sanders, and W. Schweika, J. Phys.: Conf. Ser. 145, 012076 (2009).

    Google Scholar 

  17. Z. A. Kazei, V. V. Snegirev, L. P. Kozeeva, M. Yu. Ka-meneva, and A. N. Lavrov, J. Exp. Theor. Phys. 126, 650 (2018).

    Article  ADS  Google Scholar 

  18. L. P. Kozeeva, M. Yu. Kameneva, A. N. Lavrov, and N. V. Podberezskaya, Inorg. Mater. 49, 626 (2013).

    Article  Google Scholar 

  19. A. V. Alekseev, M. Yu. Kameneva, L. P. Kozeeva, A. N. Lavrov, N. V. Podberezskaya, A. I. Smolentsev, and A. N. Shmakov, Bull. Russ. Acad. Sci.: Phys. 77, 151 (2013).

    Article  Google Scholar 

  20. Z. A. Kazei, V. V. Snegirev, L. P. Kozeeva, and M. Yu. Ka-meneva, J. Exp. Theor. Phys. 122, 136 (2016).

    Article  ADS  Google Scholar 

  21. Z. A. Kazei, V. V. Snegirev, A. A. Andreenko, L. P. Ko-zeeva, and M. Y. Kameneva, Solid State Phenom. 233–234, 145 (2015).

    Article  Google Scholar 

  22. S. N. Panja, J. Kumar, S. Dengre, and S. Nair, J. Phys.: Condens. Matter 28, 486001 (2016).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported in part by the grant of the Institute of Inorganic Chemistry within the State contract of the Federal Agency for Scientific Organizations of the Russian Federation (subject 45.22 no. 0082-2018-0003, АААА-А18-118012390045-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Kazei.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazei, Z.A., Snegirev, V.V., Stolyarenko, M.S. et al. Behavior of Cobalt and Rare-Earth Subsystems in Frustrated Cobaltites DyBaCo4O7 + x. Phys. Solid State 60, 2507–2516 (2018). https://doi.org/10.1134/S1063783419010128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419010128

Navigation