Skip to main content
Log in

Effect of an Electric Field and a Temperature Gradient on the Formation of a Hydrodynamic Flow in a Thin Nematic Capillary

  • POLYMERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theoretical description of the principles of nonmechanical transportation of microliter volumes of a liquid crystal (LC) encapsulated in a thin capillary is proposed. By numerical methods within a nonlinear generalization of the classical Ericksen–Leslie theory, various regimes of formation of a hydrodynamic flow in a uniformly oriented LC cavity under the action of a temperature gradient and a double electrostatic layer naturally arising at the LC/solid interface are investigated. The sizes of an LC capillary and the parameters of the necessary thermal effect capable of initiating a flow of the LC phase in the horizontal direction are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. V. Shock J. Y. Han, and P. Remind, Rev. Mod. Rhys. 80, 839 (2008).

  2. W. Sparreboom, A. van den Berg, and J. S. T. Eijkel, New. J. Phys. 12, 0115004 (2010).

    Article  Google Scholar 

  3. P. Popov, L. W. Hanaker, M. Mirheydari, E. K. Mann, and A. Jakli, Sci. Rep. 7, 1603 (2017).

    Article  ADS  Google Scholar 

  4. J. Beeckmann, I. Nys, O. Willekens, and K. Neyts, J. Appl. Phys. 121, 023106 (2017).

    Article  ADS  Google Scholar 

  5. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, Opt. Express 18, 13981 (2010).

    Article  ADS  Google Scholar 

  6. H. C. Lin and Y. H. Lin, Opt. Express 20, 2045 (2012).

    Article  ADS  Google Scholar 

  7. A. V. Zakharov and A. A. Vakulenko, Phys. Fluids 27, 062001 (2015).

    Article  ADS  Google Scholar 

  8. A. V. Zakharov and P. V. Maslennikov, Phys. Rev. E 96, 052705 (2017).

    Article  ADS  Google Scholar 

  9. A. Yu. Malyuk and N. A. Ivanova, Appl. Phys. Lett. 112, 103701 (2018).

    Article  ADS  Google Scholar 

  10. A. V. Zakharov and A. A. Vakulenko, J. Chem. Phys. 127, 084907 (2007).

    Article  ADS  Google Scholar 

  11. J. N. Israellachvili, Intermolecular and Surface Forces (Academic, London, 1992).

    Google Scholar 

  12. J. L. Ericksen, Arch. Ration. Mech. Anal. 4, 231 (1960).

    Article  Google Scholar 

  13. F. M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968).

    Article  Google Scholar 

  14. R. S. Akopyan, R. B. Alaverdian, E. A. Santrosian, and Y. S. Chilingarian, J. Appl. Phys. 90, 3371 (2001).

    Article  ADS  Google Scholar 

  15. A. V. Zakharov and A. A. Vakulenko, Phys. Rev. E 80, 031708 (2009).

    Article  ADS  Google Scholar 

  16. I. S. Berezin and N. R. Zhidkov, Calculation Methods (Fizmatgiz, Moscow, 1964) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant no. 16-02-00041a) and the Ministry of Education and Science of the Russian Federation (grants nos. 3.11888.2018/11.12 and 3.9585.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zakharov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, A.V., Pasechnik, S.V. & Maksimochkin, G.I. Effect of an Electric Field and a Temperature Gradient on the Formation of a Hydrodynamic Flow in a Thin Nematic Capillary. Phys. Solid State 60, 2656–2662 (2018). https://doi.org/10.1134/S1063783418120314

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418120314

Navigation